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Abstract
This report describes the development of
Heurika, a distributed shared file system for lo-
cal area networks. With Heurika, every client
in a network contributes to the shared file sys-
tem in a peer-to-peer manner to avoid the bot-
tleneck and single point of failure that plagues
traditional centralised shared file systems.

A design for a decentralised peer-to-peer
file system is presented and its characteristics
theoretically analysed. Then a prototype of the
design implemented in C++ is described and
experiments in a simulated network with 96
peers presented.

The theoretical and the empirical results in-
dicate that Heurika can provide better avail-
ability and scale better than a centralised
shared file system.



Preface

This report documents the development of a distributed shared file system
for local area networks. The system has been developed as part of the DAT3
semester at Department of Computer Science, Aalborg University.

Source code for the prototype of the system is available at
http://www.cs.auc.dk/~jasper/dat3/ and on the attached CD-ROM.
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Chapter 1

Introduction

Organisations usually deploy a wide range of different facilities with the single
purpose of improving the work flow within the organisation. Most often a file
storage facility is among these facilities, and the local area network (LAN) of
the organisation plays an important role in providing access to it. This chapter
presents various approaches for providing a file storage facility, and defines
the scope of the project. It concludes with a presentation of useful ideas from
related systems.

1.1 The centralised file system

A simple approach for providing a file storage facility is to run a central file
server on a single machine as shown in Figure 1.1. This provides users with
concurrent access to a common place for storing private and shared files. The
file server may run the Network File System (NFS) [2] protocol from Sun Mi-
crosystems, the Server Message Block (SMB) protocol from Microsoft or other
file systems with similar features.

..
.

Clients

cn

c1

c2

Central file server

Figure 1.1: Clients accessing a central file server, running on a single machine.

This centralised approach ensures that clients can easily locate the file ser-
vice, and that administrators can easily perform backup of important data.
However, organisations whose work flow is highly dependent on the storage
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Chapter 1. Introduction

facility are in a critical situation if the file server fails. We do not consider the
problem of losing files since it, in most cases, can be alleviated by backup. But
the failure of the file server may paralyse the organisation until the server is
repaired or replaced. In terms of lost work hours, this may be very costly.

Another problem is that a single file server does not scale well if the number
of requests grow significantly. Bottlenecks are likely to occur and the cost of
adding more and more advanced components raises.

1.2 The replicated centralised file system

One way of achieving higher availability of the file sharing service is to have
another server that can answer clients when the first server is down. This is
known as fail over, and can transparently provide higher availability as long as
the network is still running. For the extra servers, there are two possibilities:
either they can be passive, meaning that they are unused as long as the primary
server is running, or they can be active, meaning that they participate in serving
client file requests with the first server.

1.2.1 Passive servers

The passive server approach is illustrated in Figure 1.2. An active server is the
primary server that serves client requests, and the other secondary servers are
passive as long as the primary server has not failed. Each passive server must
have the following properties:

..
.

Clients

cn

c1

c2

Fast connection Central file servers

Figure 1.2: Clients accessing a central file server, running on a single machine. Several
passive servers are ready to take over if the active server fails.

• It must hold exactly the same versions of the files in the active server,
hence an entire replica of the files is needed. This can be achieved by
using a fully replicated file system.

• It must be aware of the current states of the clients using the active server,
e.g. current work directory and open files. This is easily achieved with a
stateless file server protocols such as NFS [2].
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Chapter 1. Introduction

The passive servers must be able to detect when the active server has failed.
This can be done in two ways: either the passive servers can continually ask
the active server whether it is operating, or the clients can themselves alert a
passive server if the active server is not responding.

When a passive server has become active, the technical staff can disconnect
the failed server and repair it without disturbing client activities. When the
failed server is operating correctly again, it can be reconnected as a passive
server and thereby be ready to take over if the new active server fails.

1.2.2 Active servers

Deployment of passive servers improves the availability of the file service, but
having passive servers that hardly ever serves the clients seems wasteful. In-
stead all servers can be allowed to answer requests as illustrated in Figure
1.3. As with the passive approach the files must be fully replicated among the
servers.

..
.

Fast connection

Load balancer

Clients
Central file servers

cn

c1

c2

Figure 1.3: Clients accessing a central load balancer. Several active servers are ready to
answer the clients.

A distribution mechanism of requests is needed to ensure that one server
does not carry all of the work load – the load should be balanced among the
servers. There are several approaches for load balancing [1] but the one shown
in Figure 1.3 uses a special dedicated machine to select what servers to direct
the incoming requests to. The most sophisticated load-balancing devices can
detect failed and overloaded servers, and use this information to direct clients
to one of the other servers. If a server fails, it can be disconnected, repaired and
subsequently reconnected without disturbing clients as with the passive server
approach.

1.2.3 Advantages and disadvantages

Fail over techniques solve the availability problem of the single centralised ap-
proach. If a load balancer is added, the scalability increases because the extra
servers can serve clients in parallel. Compared to the simple approach, the per-
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Chapter 1. Introduction

formance may however be worse since files need to be replicated when they
are changed.

The primary disadvantage is cost. The extra file servers and the mainte-
nance of them add to the cost of the file service and requires setting up a repli-
cated file system among them. This added cost may even turn out to be too
high compared with the cost of a disrupted work flow when a single server
fails. And if additional storage is needed, all of the replicated servers will need
to be upgraded, which causes additional expenses compared with the simple
approach.

1.3 A peer-to-peer decentralised file system

An alternative approach, and the approach we will pursue in this project, for
providing a file storage facility without a single point of failure, with better
scalability and without resorting to a traditional expensive fail over solution, is
to avoid any central servers and instead use the clients themselves for storing
the files. Then the clients become peers and form a decentralised peer-to-peer
network. To avoid losing files when peers crash or are shut down, the files must
replicated throughout the network.

This approach could achieve:

• High availability because no single point is responsible for the file ser-
vice.

• Much lower cost since there are no dedicated file servers to buy and
maintain.

• Built-in scaling. When the number of peers and thus requests increase, so
do the resources the file service can utilise.

• Faster serving of requests since there are many peers to use, e.g. when
retrieving a file.

• Better utilisation of the computational resources in an organisation, e.g.
better utilisation of free disk space, unused network bandwidth and un-
used processor time in each peer.

There are, however, also some disadvantages:

• The behaviour of the file service becomes much more unpredictable since
it is spread out over the whole network.

• If the performance is not good enough, improving it is much more diffi-
cult than upgrading a few central servers.

• The burden the service puts on the peers may be too high. For instance,
it may use too much network bandwidth or too much disk space. Due to
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Chapter 1. Introduction

the replication and decentralised nature of a peer-to-peer system, there
will be a certain amount of overhead in terms of duplicate data and extra
coordination messages.

Hence, choosing between a distributed system approach and a traditional cen-
tralised approach will be a trade-off that depends on the particular circum-
stances in an organisation. In order to keep the discussions focused, we will
make the following assumptions about the organisations that our system tar-
gets:

• The machines are equipped with hard drives with much more free space
disk space compared to the amount of data that it should be stored in the
file service (we will later quantify this, but e.g. 10 Gb free for storing 1 Gb
of data per machine). Also, the rest of the hardware is powerful enough
to handle the requests and responses. Hence, thin clients are not useful
for our system.

• The internal network is a LAN with the following characteristics: high
bandwidth (10/100 Mbit), low latency (round trip time on the order of 1
ms) and a limited number of clients (less than, say, 20,000).

• Malicious peers in the network can be tracked down (and the responsi-
ble person sacked), thus the system does not need to protect itself from
denial-of-service attacks.

We believe these assumptions are valid for large number of organisations. New
machines are sold with 100 or even 1000 Mbit Ethernet and several gigabytes
of free disk space.

1.4 Aims of this project

The decentralisation of the file service introduces many problems concerning
the peer-to-peer network that needs to be solved for it to be a viable solution.
The aim of this project is to address these problems by designing a decentralised
peer-to-peer file system with the following requirements (in order of priority):

High availability and fault-tolerance The failure of a peer must not bring down
the system and must not cause files to be unavailable. Failure of multiple
peers must not cause the system to end in an unresolvable inconsistent
state.

Self-organising and dynamic The system must continue to function reliable
when peers join and leave the network dynamically, and must itself or-
ganise the peers without human intervention.
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Reasonable performance To be usable at all, the system must not be too slow
or use too many resources (such as disk space, network bandwidth and
CPU time).

Transparency The system should not look any different from the users’ per-
spective than other networked file systems.

Scalability The system must be able to scale up to the number of machines
connected to the LAN.

It is also an aim to implement a working prototype of the file system that
demonstrates the features of the network. Finally, the last aim is to analyse the
design theoretically and in practise through the prototype.

1.5 Related work

Several related projects already exist in the problem domain although most of
the recent work seems to be intended for a wide-area network, the Internet. We
will in this section present some of the ideas from these related systems that
will be reused in our system.

For a decentralised distributed file system, the most basic problem that
must be solved is that of locating the nodes to contact for a given file name.
With traditional centralised distributed file systems such as NFS, the Andrew
File System and Coda [2] the answer is simple: contact the central servers. For
decentralised systems, there are various approaches:

1. One can maintain a separate dedicated directory service. To avoid a sin-
gle point of failure, this service must itself be replicated. For scalability
reasons, it may be necessary to decentralise the service to some degree;
for instance, by organising it in a hierarchy such as the Internet DNS.

2. A completely decentralised, peer-to-peer approach is that of Gnutella [5]
which floods the neighbourhood of nodes each time a lookup is per-
formed. The underlying idea is that the active nodes are organised in
a logical or overlay network where each node keeps routing information
about a subset of the other nodes.

3. A recent advance is the application of hash-based lookup in overlay net-
works. Instead of using the routing information to flood the network, a
hash function is used to determine where in the network the lookup key
is located and the routing information is then used to guide the lookup
to the right node.

The usual hash designs, used for instance in general-purpose data struc-
tures such as hash tables, does not work in the face of nodes dynami-
cally joining and leaving, and nodes having different incomplete views of
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what constitutes the overlay network. Consequently, hash-based lookup
rests on the concept of consistent hashing [6] where small changes do not
require a global rehashing of the data.

In general, a dedicated directory service has the problem of much added
complexity since it requires design, implementation and test of a separate dis-
tributed system.

The flooding approach is, at least conceptually, very simple but does not
scale well [12] and cannot guarantee that data saved in one end of the overlay
network is at all available at the other end unless the flood queries are allowed
to travel an unlimited number of hops.

A number of systems have been devised for the Internet using the hash-
based approach [9; 11; 15; 17; 22], collectively known as distributed hash tables.
They differ in how the peers (known as nodes) are organised in the overlay
network and how the routing tables are used and maintained. Common to
all of them is that node identifiers and data keys are mapped into the same
hash space. The data associated with a key is then placed on the nodes whose
identifiers are closest to the key in this hash space given some distance metric.
In general, r nodes are selected for some replication constant r which should
be large enough to render data loss unlikely (with r replicas, r − 1 nodes may
leave without causing data loss).

One system, Chord [17], deploys a ring topology where each node knows
about the next r nodes in the ring to ensure that nodes can disappear without
breaking the ring. Each node also maintains a table of the node halfway, three-
quarter way, seven-eighth way and so on through the ring to be able to guar-
antee logarithmic time complexity for finding any node. The distance metric
is the forward numeric distance through the ring with appropriate wrapping.
The Cooperative File System (CFS) [3] is a distributed decentralised file system
built on top of Chord.

The distance metric in another system, Kademlia [9], is based on XOR’ing
the hash values and interpreting the result as an integer. The routing table in
each node is split into a number of buckets of fixed size where each bucket
in turn covers more distant and logarithmically larger areas of the hash space.
Hence a given node knows many nodes in its neighbourhood, but only few
nodes far away. For a file system on the Internet with potentially millions of
nodes, this property is important to limit the size of the routing information in
each node.

As illustrated in Figure 1.4, the nodes closest to a data key can be found
by iteratively asking the known nodes for which nodes they think are closest
to the data. A user on the originating node 001 has asked for a piece of data d
with the key 110. The originating node has three buckets (denoted with dotted
lines) and initially knows one node in each bucket, the nodes 000, 011 and 101.
There is one more node, 111, in the network.

10
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d

?
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Figure 1.4: Example of Kademlia data retrieval with 3-bit keys and buckets of size 1 from
the view point of the node 001.

At the first step, the node 101 is found to be the closest node to 110 since

101 ⊕ 110 = 011 = 3

011 ⊕ 110 = 101 = 5

000 ⊕ 110 = 110 = 6

Node 101 is then asked for what it believes to be the closest nodes to 110. It
only knows of the node 111 so it responds with 111. The originating node then
asks node 111 for what it believes to be the closest nodes to 110, but since node
111 is storing d itself as there is no node at 110, it simply responds with d.

In Kademlia, the routing tables are mostly maintained by learning about
other nodes from the messages that a node receives – in the above example,
the originating node could have inserted node 111 in its bucket of most distant
nodes if the bucket was not already full. To handle new nodes joining and
nodes being inactive, extra random lookups are simulated from time to time.

Both Chord and Kademlia are attractive because they are (at least concep-
tually) quite simple. The main advantages of using XOR instead of a ring are
that it is simpler to guarantee the logarithmic lookup, that XOR make it more
feasible to use all messages for ensuring the connectivity of the overlay net-
work (this will be explained in Section 2.2), and that there is more freedom in
maintaining the routing information since Kademlia can choose to remember
any node in a bucket instead of having to find the node halfway, three-quarter
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way, etc. through a ring.
Thus the design of our system is based on the architecture of Kademlia.

Other distributed hash table systems that will not be further considered in
this project include Content-Addressable Network (CAN) [11] which uses a
d-dimensional coordinate space, Pastry [15] which uses a technique known as
prefix routing, and Tapestry [22] which uses a topology called Plaxton trees,
and is used in the Oceanstore project [7] for a global-scale file system. A more
detailed summary for Chord is given in [17].
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Chapter 2

Design

This chapter presents the design of the system. First an overview of the com-
ponent architecture is given, followed by a more detailed description of each
component to define the underlying protocol, algorithms and data organisa-
tion in the system.

2.1 System overview

The system is based on a distributed hash table and consists of three compo-
nents, the distributed hash table, the actual file system and the garbage collec-
tor, see Figure 2.1.

file system

distributed hash table

garbage collector

client

other clients

application interface

network interface

Figure 2.1: The architecture of a client of the system.

The distributed hash table component, described in Section 2.2, is concerned
with the distributed storage and retrieval of data blocks which are at most B
bytes large. To achieve high availability and ensure that blocks can be retrieved
when nodes crash, it must replicate the data on different nodes.

The file system component, described in Section 2.3, is concerned with us-
ing the distributed hash table component to store files and directories by split-
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ting them into blocks, and presents an ordinary file system interface to appli-
cations, albeit with looser guarantees than a local file system or a centralised
file system such as NFS (Section 3.2 will examine this).

The garbage collector component, described in Section 2.4, is necessary be-
cause the two other components may leave blocks that are not needed or us-
able, i.e. if we visit all blocks in all files in all directories, some blocks will not
be visited.

2.2 Distributed hash table

The interface to the distributed hash table component is put(key, block) that
stores a block and get(key) that returns a block. Underneath this interface, each
node participating in the overlay network keeps track of the addresses of a
subset of other nodes in the network and maintains a list of the data blocks it
is storing itself. This makes it possible to find and distribute the blocks.

The design of the distributed hash table is almost completely reused from
the design of Kademlia [9] and uses the XOR metric to measure distance be-
tween keys.

Each node and each different data block is identified by a unique m-bit key
(for some fixed value of m). To find out where to place a given block, its key kb
is XOR’ed with the key of a node kn and the result d = kb ⊕ kn, an m-bit integer,
is interpreted as a distance. The block is then distributed to the r nodes in the
network for which the distance d is shortest. Similarly, a block is retrieved by
contacting anyone of the r nodes that the block is closest to.

Since we do not require each node to know about all the other nodes, the
storage and retrieval process must be preceded by a lookup procedure that
finds the closest nodes. Figure 2.2 illustrates the problem. As explained in Sec-
tion 1.5 and in Figure 1.4, this can be done by iteratively asking the known
nodes for what nodes they think are closest to the block key.

CB ED F HGAb

Neighborhood of b

Figure 2.2: Nodes ordered on XOR distances to the block b. The nodes within the stippled
box are responsible for storing b. The dotted nodes are the nodes that G does not know about.
To store b, G must know about C.

2.2.1 Obtaining the keys

To obtain the keys needed to communicate with the component, a hash func-
tion H is required to produce an m-bit number. Examples of such hash func-

14
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tions are SHA-1 [16], RIPEMD-160 [4] and MD5 [14]. To balance the work load
among the nodes, it is important that the hash function distributes the values
evenly. The pseudo-randomness property of the hash functions above assures
this.

2.2.2 XOR and the topology of the space

Using XOR as the distance metric gives a topology that perhaps best can be
explained by a tree, see Figure 2.3. The leaves correspond to nodes and the
paths from the root to the leaves enumerate the node hash values. Then given
a node n and a subtree that does not contain n, the distance from any node in
that subtree to n is on the same order of magnitude (in base 2) [9].

0 11

1

0

0

1 0

1 0 01

01

1 0 1 0 1 0 1 0 1 1 01 0 1 0 0

t001t01t1

Figure 2.3: Illustration of the topology of the hash space. The XOR distance from the nodes
0000 and 0001 to a node in the subtree t001 is 0010 or 0011 (2 or 3). To a node in the subtree
t01, the distance is 0100, 0101, 0110 or 0111 (4, 5, 6, 7). To the subtree t1, the distances are
1000, 1001, . . . , 1111 (8, 9, . . . , 15). Hence, for any nodes a ∈ t001, b ∈ t01, c ∈ t1 we have
the ordering d(a) < d(b) < d(c) on the distances from 0000 and 0001 to a, b and c.

Apart from the rule that nodes in subtrees are on the same order of mag-
nitude away, the tree does not give any visual clue precisely how far away a
given node is, though. As illustrated in Figure 2.4, when the point of view is
switched from one node to another, the distances inside a subtree that does not
contain the two nodes are exchanged too!

0 11

1

0

0

1 0

1 0 01

01

4 6 7 0 1 2 35
7 5 4 3 2 1 06

Figure 2.4: The distances from the node 000 and the node 011, respectively, to all the other
nodes. Note that of the nodes in the left subtree (marked with a dotted line), 000 is closest to
100, whereas 011 is closest to 111.
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In spite of this, XOR is in fact a valid metric since x ⊕ x = 0, x ⊕ y > 0 if
x 6= y, and ∀x, y : x ⊕ y = y ⊕ x. Moreover, XOR has the triangle property, i.e.,
that ∀x, y, z : x ⊕ y + y ⊕ z ≥ x ⊕ z, which follows from the combination of the
facts that (x ⊕ y) ⊕ (y ⊕ z) = x ⊕ z and ∀a ≥ 0, b ≥ 0 : a + b ≥ a ⊕ b [9].

Furthermore, XOR as distance metric is unidirectional [9] which means that
for any point x and distance d, there is exactly one point y such that x ⊕ y =

d. To verify this, consider XOR’ing 1010 with some unknown number y and
obtaining the distance 1100. The four digits of y will then cover all possible
cases. In tabulated form:

1 0 1 0
⊕ y4 y3 y2 y1

1 1 0 0

If 0 ⊕ y1 = 0, then y1 must be 0 since 0 ⊕ 1 = 1. Similar reasoning leads to
the conclusion that y2 = 1, y3 = 1 and y4 = 0. Thus, y is uniquely determined.
The unidirectionality of XOR is contrary to the Euclidean distance metric where
two points may be equidistant to another point, e.g. −5, 5 and the point 0, and
ensures that there will not be two different groups of node to contact when
looking up a hash value, see Figure 2.5. This means that only a single group
needs to keep track of the what is near the hash value.

A B

Figure 2.5: The group of nodes in the vicinity of A and of B are equally close to hash value
in the middle. This cannot happen with the XOR metric.

Another important property of XOR is that it is symmetric [9] (i.e. ∀x, y :
x ⊕ y = y⊕ x), unlike the distance metric in a ring-based system such as Chord.
With an Internet-wide system where the routing tables are always incomplete,
this is important because it means that nodes that are close to each other and
hence are more likely to know about each other, are also more likely to com-
municate. This communication helps keeping the most important part of the
routing tables, the part that covers the nearest nodes, up to date. The symme-
try is less important for a local area network where the routing tables can be
allowed to grow to the size of the network.

2.2.3 Ensuring connectivity in the overlay network

To be able to scale to millions of hosts, Kademlia can not afford to store routing
information about all nodes in the network at every node. But this is not a
problem for a local area network with less than 20,000 nodes. Hence, a node in
our system should never throw away information about other nodes.

It would, however, be very expensive to update all the available routing
information regularly. Since an incoming message from a node A to a node B
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has the side effect of telling node B that node A is alive, the total number N of
necessary ping messages for n → ∞ nodes would be (assuming nodes do not
otherwise communicate):

N = n − 1 + n − 2 + . . . + n − n =
n

∑
i=1

(i − 1) = Θ(n2)

Since it is necessary to update the routing tables from time to time to ensure
that the connectivity in the overlay network is not lost, we instead simulate
the bucket approach in Kademlia. The routing table for a node is iteratively
divided into [2i, 2i−1) ranges with 0 < i ≤ m and i starting at m, as long as
there are more than r nodes in the range that contains the node itself as shown
in Figure 2.6.

1

1 0

1 0

1 0

1 0

0

1... 0...

1...

1...

01... 00...

01...
001... 000...
1

0

Figure 2.6: Division of the routing table for the node 000. . . . First step is to divide the
routing table into two equal-sized ranges. All nodes with prefix 1 are in the leftmost range
and nodes with prefix 0 are in the rightmost. When there are more than r elements in the
range containing the node itself, that range is divided again. The division process stops
when there are less than r nodes in the range that contains the node.

After the ranges have been constructed, a lookup is performed on a ran-
dom hash value in each range. Each lookup returns information about r nodes,
which ensures that the node has updated routing information for all ranges
and that it knows its neighbourhood particularly well.

When a node joins the overlay network, it must perform a lookup for its
own identifier followed by the above procedure. This ensures that it gets to
know its neighbourhood and that the neighbourhood get to know it.

With this approach for updating routing tables, one can prove that the net-
work will remain connected with very high probability, and that a lookup finds
the closest nodes to a key in O(log n) time [9]. The probability of loosing con-
nectivity depends on r, how often nodes crashes, joins and the time interval Tr
between updates.
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2.2.4 Ensuring data persistency

This section describes how data persistency is ensured by maintaining that the
r nodes closest to a block store it. This can be violated by nodes crashing or
joining.

Crashing nodes

A node A that crashes or otherwise leaves the network will result in some
blocks being stored by only r − 1 live nodes. Another node B will then become
responsible for storing these blocks and must somehow receive them. One way
of doing this is to let all nodes send all the blocks they are responsible for at
regular intervals, to the other r − 1 nodes that are responsible for the blocks.
Eventually, B will then receive the blocks it is missing.

The time interval Tb at which the above procedure, which we refer to as
republishing [9], is performed must be short enough to render it very unlikely
that r nodes leave within it. Republishing is the corner stone in securing a high
availability for the system. Unfortunately, with a straightforward implementa-
tion it is also very expensive when the system is storing many blocks. Thus we
introduce two optimisations.

Instead of sending the entire blocks, we let each node send a replication offer
message to the other responsible nodes. The message contains a list of block
keys, and the receiver may then obtain any blocks it is missing either by the
usual get procedure or directly from the sender. As long as crashes happen
infrequently, this reduces the amount of data sent by orders of magnitude. For
instance if a key is 4 bytes and a block is 4000 bytes the order of magnitude is 3.

Furthermore, from Kademlia [9] we get the optimisation that a node does
not have to send a replication offer for a block if it has recently received a
replication offer for that block. This is not necessary because the r − 1 other
nodes responsible for the block must also have received the replication offer.
With this scheme, only one node will have to send a replication offer for a given
block and the other r − 1 offers may be saved.

Joining nodes

A node B that joins the network may end up being closer to a block than some
of the r nodes that previously has been storing the block. The above republish-
ing procedure will ensure that eventually B will receive a replication offer for
the block.

The republishing procedure can easily be improved upon by having B ask
some nodes to send a replication offer immediately, since B knows that it has
just joined the network. It is enough to ask the nodes in the smallest subtree
which consists of B and at least one other node. To see this, consider Figure
2.7 which shows the situation before and after B joins. Initially the node A
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is the only node in the leftmost subtree and must thus store all blocks (since
r = 2 and there is only one node in the rightmost subtree). When B enters, it
will share the responsibility of storing the nodes in the leftmost subtree with
A (since all nodes within this subtree are within the same order of magnitude
apart from any other node outside the subtree). B will further take over from A
the responsibility of half of the rightmost subtree (due to the way XOR distance
works). But since A must have been storing the blocks from this subtree, it
suffers for B to ask A to send a replication offer for the blocks that B should
store.

0 11

1

0

0

1 0

1 0 01

01

A C

0 11

1

0

0

1 0

1 0 01

01

A CB

A is responsible A and B are responsible A is
responsible

B is
responsible

Figure 2.7: To the left is the hash space before B joins the network and to the right the hash
space after B has joined (with r = 2). B takes over from A the responsibility of a subtree.

If there is more than one other node in the smallest subtree that contains B
and another node, each of these other nodes will have been responsible for a
different part of the subtree that B becomes responsible. Hence, B must ask all
of them for replication offers.

2.2.5 Protocol

Having given a detailed description of the distributed hash table, we continue
with a definition of what messages a client process participating in our system
must support for the communication between the distributed hash tables.

Supported protocol primitives

The distributed hash table must be able to query for other nodes, request read-
ing and writing of a block, offer blocks that should be replicated and ping
nodes to see if they are alive. Besides these, there must be messages for the
replies to these requests.

FIND CLOSEST (KEY): Sent when a node needs to discover the neighbourhood
around a key. Upon receipt, a node should reply with a FIND CLOSEST

REPLY message that contains the identifier keys for the r nodes it knows
of closest to the key. Since no nodes are assured to know all available
nodes, a node that wants to find the r nearest nodes may have to issue
multiple iterative FIND CLOSEST messages to different nodes.

RETRIEVE BLOCK (KEY): Sent to a node to retrieve the block with the given
key. If the node does not have the block, it returns a negative answer
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NEGACK, otherwise it replies with a RETRIEVE BLOCK REPLY message that
contains the block.

STORE BLOCK (KEY, BLOCK): Sent to a node to request that the node stores
the block. The receiving node must henceforth from time to time ask the
other neighbours around the key whether they maintain their replicate of
the block; at first, the sending node will itself send out STORE BLOCK mes-
sages to the r closest neighbours. The receiving node must reply with an
acknowledgement ACK, or a NEGACK if it was unable to store the block.

REPLICATION OFFER (KEY LIST): Sent to a node to ask it to check if it main-
tains the offered blocks. The receiving node should request any missing
blocks with RETRIEVE BLOCK and reply to the initial request with an ACK.

SEND REPLICATION OFFER: Sent to a node to ask it to generate and send a
replication offer to the sender. The replication offer should contain all
keys of the blocks that the sender should store.

PING: Sent to a node to see if it is still alive. A live node should reply with an
ACK message. Any message received counts as a ping reply, so it is only
necessary to ping nodes that have not been heard from in some time.

The replies to the above are:

RETRIEVE BLOCK REPLY (BLOCK)): Sent to a node that issued a RETRIEVE BLOCK

request.

FIND CLOSEST REPLY (HOST LIST): Sent to a node that issued a FIND CLOSEST

request.

ACK: Sent to a node that either issued a STORE BLOCK, REPLICATION OFFER

or a PING request indicating that the message has been received and ac-
cepted.

NEGACK: Sent instead of an ACK in case a request was received but could not
be fulfilled.

Transport protocol

The User Datagram Protocol (UDP) is used for transmitting the protocol prim-
itives over the network. UDP is chosen mainly because all messages easily can
be made to fit within the limit on the size of the UDP datagrams (which is about
64 kb), and using UDP saves the connection-setup latency of a connection-
oriented protocol such as Transmission Control Protocol.

UDP does guarantee the integrity of the received message so that either the
message is received intact or it is not received at all. But our application level
protocol must itself ensure that messages are resent if they are lost, and that
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duplicates are suppressed. The first can be taken care of easily by means of
timeouts, and the latter is ensured via sequence numbers. The sequence num-
bers are needed anyway for matching an incoming reply with a previously sent
request.

Message layout

All messages are byte sequences and consist of at least the following:

• An identifier for determining which protocol primitive the message is (1
byte).

• A sequence number that is used for matching replies to requests (4 bytes).

A message request and a reply may furthermore contain a payload that corre-
sponds to the input and output of the protocol primitive, respectively. The size
of the payload may vary and is indicated via length fields in the messages; it
must, however, not exceed the UDP maximum datagram size.

2.2.6 Algorithms

This section provides a high-level description of the various algorithms in the
distributed hash table. The algorithm uses the global variables r and t that de-
scribes the number of replications and the time between republishing, respec-
tively.

Finding the closest nodes to a key

When finding the r closest nodes to a given key k, the requesting node B first
looks up the r closest nodes currently known to B. These nodes are bound to a
list of currently closest nodes.

B iteratively asks each of nodes in currently closest nodes which r nodes they
believe is the closest node. If one of the nodes received in the answer is closer
than one of the nodes in currently closest nodes this new node is included instead
of the node the furthest away. This process repeats until no closer nodes is
received.

<the r closest nodes to k> Closest (key k) = “

1. Build a list currently closest nodes with r nodes closest to k

2. For each node A in currently closest nodes

(a) Send the protocol primitive FIND CLOSEST (k) to A
(b) If one of the nodes received in the answer is closer than

a node in currently closest nodes replace the node with the
one the furthest away and go to step 2.

3. return currently closest nodes”
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Joining the network

The requirement for joining the network is a known node A in the network,
and the following steps:

Join (a known node A) = “

1. The joining node B uses Algorithm Closest(kB) at A to find the
closest nodes to itself.

2. Refresh the routing table according to Section 2.2.3.”

After each query the view of B expands, and can be summarised as:

• 1st view is the know node B.

• 2nd view is the closest nodes to B

• 3rd and final view is the view of the complete network

Republishing

A file block is republished every t minutes to compensate for nodes failing.
This aids in ensuring that at least r closest nodes store the block. Republishing
a block with key kb amounts to performing the following steps:

Republish () = “

1. Find the r closest nodes by using Algorithm Closest(kb).

(a) Send a REPLICATION OFFER (kb) to the r nodes.

2. If a node A receives a replication offer of block key kb and it
does not store that block, it sends a RETRIEVE BLOCK (kb) to
whom it received the offer from.”

Hence A now stores the block kb thus fulfilling the replication offer.
To avoid sending too many replication offer messages, when a block repub-

lish is due the node checks if any other blocks are also due and creates a list lk
containing the block keys. It then sends a replication offer using REPLICATION

OFFER (lb) to its r closest nodes.
The worst case scenario is that the r nodes are very closely located in the

hash space and fail simultaneously, which means that they are the only ones
storing the blocks. If this happens before any of the nodes have republished the
blocks, the blocks are unavailable until any of the nodes re-enters the network.
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2.3 File system

The interface of the file system component has means of opening and closing
the file and the operations seek(bytes, relative, forward), read(bytes), write(buffer),
symlink(name), remove() and makedir(name), that work with directories and
sequential files named by unique paths. The task of the file system component
is to map this into keyed blocks that can be stored in the distributed hash table.

Files are keyed on their complete paths, including the file name itself. To
lookup the file with the file path p, the hash function H is applied to yield the
key H(p). This key is used to retrieve a file identifier block that contains some
house-keeping information and a file identifier that must be unique for each
file and for each version of the file.

Keys for the blocks with the actual contents of a file are obtained by con-
catenating the block number with the file identifier and hashing the result, so
the key for the i’th contents block of the file with identifier f is k f ,i = H( f i). A
file fS smaller than B bytes simply consists of a single partial block, keyed k fS,1,
whereas a large file fL is split up into a number of full-sized blocks, keyed k fL,1,
k fL,2, . . . , k fL,n−1 and a partial block with the remainder, k fL,n.

-1

2

1

3

0

H(p)
f 4

Meta data

File contents

Node

H( f i)

Figure 2.8: The structure of a file. First the hash of the file path, H(p), is used to retrieve
the file identifier f which is then used to to retrieve the file meta data and contents.

File meta data such as size, time stamps and access control lists are placed
in the blocks k f ,0, k f ,−1, k f ,−2, . . . for the file f . With this scheme, user-defined
extended meta data can be added easily. Figure 2.8 illustrates the structure.

An immediate consequence of the indirect approach is that when a file is
renamed or moved from p to p′ resulting in a different hash, H(p′) 6= H(p),
only the file identifier block must be moved to other nodes, and not the entire
file. From a robustness point of view, the most useful property of the indirec-
tion is that two nodes can start distributing the blocks of a file and then only
replace the file identifier block when they are finished. As will be explained in
Section 3.2, this ensures that the contents of one node’s version of a file is not
interleaved with the contents of another node’s version.

Directories have a special bit set in the house-keeping information in their
file identifier block but are otherwise just ordinary files that contain a list of
directory and file names. No other meta data about the files are stored in the
directory file lists. The name listings are only needed for listing the contents of
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directories or for building a tree of the file system (for searching or displaying
purposes) and not for ordinary file reading since files are looked up directly by
hashing their paths.

F

D 1

n
S Target file name

File identifier

File identifier

1

0 Meta data

File contents

n

File list

Figure 2.9: Illustration of file identifier blocks for directories, symbolic links and ordinary
files.

Symbolic links can be implemented by setting a special bit in the file identi-
fier block and letting the contents of it be the path of the file that the link refers
to. Figure 2.9 summarises the three possible types of files.

2.3.1 Algorithms

This sections gives a description of the high-level algorithms associated with
the file system’s operation. Each algorithm works on an input file path, denoted
p.

Creating a file

Creating and saving a new file f with full path p involves the following se-
quence of steps:

Create (file path p) = “

1. Generate the file identifier block b f .

2. b f consists of a file type flag, file size, meta data size, a ran-
dom bit sequence, modified date and creation date. k f is the
identifier key which consists of a hash of the random number,
version and date.

3. Split the meta data file into nm and for each meta data block
mi = m0..mn−1:

(a) Find the r closest nodes by using Algorithm Closest(k f ,−i).
(b) Store the block in each of the r nodes using STORE BLOCK

(k f ,−i,mi)

4. Split the file into n f and for each file block bi = b1..bn:
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(a) Find the r closest nodes by using Algorithm Closest(k f ,i).
(b) Store the block in each of the r nodes using STORE BLOCK

(k f ,i,bi).

5. Store the file identifier block b f using STORE BLOCK (H(p),b f )

6. Add a line with the file name without the path to the appro-
priate directory file.”

Looking up and retrieving a file

Looking up and retrieving a file f with full path p involves the following se-
quence of steps:

<the file of p> Retrieve (path p) = “

1. Retrieve the file identifier block b f by using GET (H(p)).

2. Retrieve the file meta data m f by requesting blocks k f ,0, k f ,−1,
k f ,−2, . . . using GET (k f ,i), see Figure 2.10.

3. Retrieve the remaining blocks of the file sequentially by incre-
menting the block number – starting with k f ,1.

(a) Use k f ,i to find the closest node and query it for the block
assigned to that key.

4. The file is completed once the block number reaches the file-
size divided by the block size.”

b1

A

B

C

D

b f

k f ,2

k f ,1

b2

H(p)

Figure 2.10: Example of a file retrieval where A fetches the first block b1 from C and the
second block b2 from D.

Updating a file

Updating an existing file f with a file identifier kold involves the following se-
quence of steps:

Update (file path p) = “

1. Generate a new file identifier k f and its block b f .
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2. b f consists of a file type flag, file size, meta data size, a ran-
dom bit sequence, modified date and creation date. k f is the
identifier key which consists of a hash of the random number,
version and date.

3. Split the meta data file into nm and for each meta data block
mi = m0..mn−1:

(a) Find the r closest nodes by using Algorithm Closest(k f ,−i).
(b) Store the block in each of the r nodes using STORE BLOCK

(k f ,−i,mi)

4. Split the file into n f and for each file block bi = b1..bn:

(a) Find the r closest nodes by using Algorithm Closest(k f ,i).
(b) Store the block in each of the r nodes using STORE BLOCK

(k f ,i,bi)

5. Store the new file identifier block b f using STORE BLOCK (H(p),b f ).”

Using this algorithm, it is very unlikely for two or more clients updating a
file at the same time to leave the system in an inconsistent state, since for that
to happen the random IDs would have to be the same number. In such a case,
the data of the node finishing last will be the new data.

The data blocks of the previous version of the file are left as garbage for the
garbage collector to clean up.

Deleting a file

Deleting a file or directory with full path p is done using the following algo-
rithm.

Remove (path p) = “

1. If p is a sequential file or symbolic link:

(a) Get the directory list containing the file.
(b) Remove p from the directory list.

2. Else p is a directory:

(a) Get the directory list containing the directory.
(b) Remove p from the directory list.
(c) Recursively run down the directory structure from the po-

sition of p.
(d) While doing this, delete all directories and files from their

associated directory.”

This process will leave the blocks of each file in the system for the garbage
collector to deal with. The reason for the recursive deletion of entries in the
deleted directory is due to the structure of file lookups which reply on the
entries of a directory to determine if the file exists.
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Renaming and moving a file

Renaming and moving files in the system is very convenient due to the struc-
ture of the distributed hash table. The file identifier holds the necessary infor-
mation to find the file blocks and implicitly holds the file name in form of its
hashed block key.

Since these two characteristics are not correlated, it is possible to move or
rename the file simply by generating a new block key using the new file path.

2.3.2 Data organisation

Having given a detailed description of the file system, we continue with how
files, directories, symbolic links are represented in the file system.

The uniqueness of a file is guaranteed by letting the file identifier consist of
the creation date of the file, a random bit sequence and a time stamp when last
modified.

The file system utilises three different file types, namely directories, sequen-
tial files and symbolic links. Directories and sequential files share the same
identifier block structure illustrated in Figure 2.11. The random number, cre-
ation time stamp and modification time stamp, used to generate the identi-
fier key, ensures that the system will not express name clashes regarding keys.
Symbolic links vary from directories and files by not having associated file
blocks and having to point to other identifier blocks. An in depth description
of the files is found below.

T Meta sizeFile size

888881

number
Random Creation

time time
Modified

Figure 2.11: The structure of an identifier block with size in bytes. Its components are file
type, a random number, creation time, modification time, file size and meta data size. The
bold box represents the components used to generate the identifier key.

Directory

A directory consists of an identifier block which references to a number of
blocks containing the directories, files and symbolic links within directory. The
number of blocks is determined by the file size and the maximum block size.
The same is true for meta data blocks.

The directory listings consist of a number of entries delimited by a new-
line character. The entries are file names stripped from the path. All house-
keeping information, such as security and time stamps, is located in the meta
data blocks.
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Sequential file

Sequential blocks consist of an identifier block which points to the blocks con-
taining the file contents. The number of blocks is determined by the file size
and the maximum block size, as with the meta data blocks.

The data blocks contain the user data.

Symbolic link

A symbolic link is an identifier block that basically reference other identifier
blocks which may either be other symbolic links or plain sequential files. The
identifier block contains a file type flag, as in directories and sequential files,
and the target’s file path. The targeted file path contained in the symbolic link’s
identifier block can obtain the maximum length of the maximum block size
minus the file type flag’s size.

2.4 Garbage collector

The distributed hash table and file system components leaves garbage in terms
of blocks that are not needed anymore. These blocks must be removed from
the system because they waste resource, not only disk space but also network
bandwidth due to republishing.

The following sections explain why the garbage occurs and how it can be
safely removed.

2.4.1 The garbage

The garbage that may occur is:

• Blocks of a file that is not in any directory. This could be because the file
has been deleted, or it could be because the node writing the file never
completed the write so that the file name was not inserted into the rele-
vant directory.

• Blocks of an old version of a file. Because of the file update algorithm
in Section 2.3.1, the blocks of old file versions are never overwritten but
simply ignored.

• Blocks from a version of a file that is in conflict with another version of
the same file. These conflicts may arise when multiple nodes are writing
the same file simultaneously, or during a network split where the network
is temporarily partitioned into two or more subnetworks. One of the ver-
sions must be chosen and the other removed.

• Blocks stored by nodes that are no longer among the r closest nodes to
the blocks. This happens when new nodes join the system.
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Some of this garbage could be alleviated by letting the distributed hash ta-
ble and file system algorithms clean up after themselves; for instance, the file
update algorithm could actively remove the old blocks. But pushing the com-
plexity to the garbage collector makes the algorithms much simpler: without a
garbage collector, a transaction protocol with explicit commit operations would
be needed to ensure that the system cleans up after algorithms that terminate
without finishing (e.g. due to a crash).

2.4.2 Collecting garbage

We distribute the responsibility of collecting the garbage and let each node
examine its own blocks to avoid a central bottleneck. For each block bi, a node
should do the following:

1. Check that bi has not been received within some time interval Tg. If it has,
the block should not be garbage collected since it may be part of a larger
file write that has not been completed yet.

2. Else remove bi if any of the following checks fail:

(a) If bi is a file identifier block then:

i. Check that the file name for bi appears in any directory.
ii. Check that there is not a newer version b′i of bi that bi is in con-

flict with.

(b) Else if bi is not a file identifier block:

i. Check that the file identifier for bi exists.
ii. Check that bi is part of the latest version of the file it belongs to.

(c) Check that the node is among the r closest to bi.

With this procedure, file identifier blocks, e.g. of deleted files, are removed be-
fore the blocks with the file data.

Note that the above formulation assumes that it is possible to get from a
data block to its file identifier block and from a file identifier block to the path
of the file. To realise this, we need to extend a data block to contain the key for
the file identifier (m bits) along with the actual file data. And a file identifier
block must contain the path of the file in addition to the other data defined in
Section 2.3.

It would be possible to avoid this overhead by means of a mark-and-sweep
garbage collection algorithm that marked live blocks by visiting the file iden-
tifier for each file in each directory and afterwards removed the unmarked
blocks. But then each node would have to retrieve all file identifiers, even if
they did not store blocks from some files.

The next sections will discuss how the checks in the garbage collection pro-
cedure can be designed.
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Detecting whether a file appears in any directory

This is easily done when the file identifier block contains the entire path name
of the file. Simply look up the directory and see if the file name is in it. To
avoid removing blocks because of a temporary failure in the network, the block
should be timestamped with the time that the condition occurred and then
checked again at some later run before it can be removed.

It is unfortunately possible that a live block is removed during a network
split even with the time stamp protection if the split lasts longer than the time
stamp delay. It is unlikely that data will be completely lost, though, since it
requires:

• That all r replicas of a the directory is stored in one part of the network.

• That all r replicas of a block is stored in the other part of the network.

• That the garbage collector for all of the r nodes storing the block decide
to remove it.

Detecting conflicting versions

When multiple nodes are writing to the same file, the file data blocks will not
interfere with each other (since they have different keys), but the file identifiers
will. It is possible that the system will end up with multiple different file iden-
tifier blocks unless one of the nodes overwrites all of the file identifier blocks
of the other nodes.

The problem is even worse during a network split since the conflict will
emerge even if the nodes do not write to the file at the same time. To see this,
consider the example in Table 2.1 where a network consisting of the nodes A,
B, C, D, E, F, G is partitioned into the two subnetworks A, B, C, D and E, F, G.
After the network is restored, there are multiple versions of the file identifier
block.

The conflict can be detected by retrieving the replicas of the file identifier
block from the r closest nodes and comparing them to the locally stored iden-
tifier block.

The question is how to resolve the conflict. A reasonable strategy is to be
to remove the local block if its modification time stamp is older than the time
stamp of one of the retrieved blocks. If the timestamps happen to be the same,
choose the block where the random bit sequence interpreted as an integer is
highest.

For this to work, the clocks of the nodes participating in the network must
of course be synchronised from time to time.
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A B C D E F G
b b b

b f b f b f

b is written

A B C D E F G
b b b

b f b f b f

a network split occurs

A B C D E F G
b′ b′ b′ b′′ b′′ b′′

b′f b′f b′f b′′f b′′f b′′f

f is updated

A B C D E F G
b′ b′ b′ b′′ b′′ b′′

b′f b′f b′
f b′′

f b′′
f b′′f

the two networks merge

Table 2.1: The file f , consisting of the data block b and the file identifier b f , is written before
the network is partitioned. During the network split, f is updated in both subnetworks (but
not necessarily at the same time). When the network is restored, it is possible to retrieve
different versions of b f .

Detecting whether the file identifier exists

Given a data block bi with the key for the file identifier, the r closest nodes
should simply be asked for the file identifier. But since failure to retrieve the
file identifier may stem from a failure in the network, the block bi should be
timestamped and first be allowed to be removed at a later run of the garbage
collector.

Detecting whether the block is outdated

Even if the file identifier for the block bi exists, it may be a file identifier for a
new version of the file. Hence, if the retrieval procedure finds a file identifier
block, further check whether the key for bi is in the set of hash values that can
be obtained from the file identifier. If it is not, the block should be removed.

Detecting a block stored by a node not among the r closest

This can be detected by keeping track of when the block was lasted offered in
a replication offer by a node. If it is more than Tb time ago then either another
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node or the node itself would have offered it for replication if the node were
still among the r closest. To appreciate this, consider the following example:

1. The network consists of nodes A, B, C with r = 3 and each node store
block bi.

2. A, B and C send out replication offers for bi to A, B and C at regular
intervals.

3. D joins the network and is closer to bi than C. Eventually, D will also get
bi after having received a replication offer.

4. A, B, C and D now send out replication offers to A, B and D.

Thus the replication offer time stamp for bi in C is henceforth not updated, and
C can safely remove bi after some time.

2.4.3 When to run the collector

One last problem that must be solved is when to start the garbage collector.
A memory garbage collector can keep track of the free memory and only

start when the memory is running out. In our system, all blocks must be re-
published as long they have not been removed. Hence, waiting for the disk
space to run out before starting the garbage collector may be a problem since it
will waste network bandwidth.

Another possibility is to monitor the network activity and start the garbage
collector whenever the activity is low. A convenient property of the algorithms
described in the preceding sections is that they allow the garbage collector to
be incremental; the garbage collector can check one block, stop and then be
restarted with the next block.

Whatever the approach, it should be combined with randomisation so that
all nodes do not start collecting garbage at the same time – this could use all
available network bandwidth for some time.
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Characteristics

This chapter will analytically characterise the design described in Chapter 2
and try to highlight the strengths and weaknesses. Even if blocks are not com-
pletely lost, they may still be temporarily unavailable for reasons we explore in
Section 3.1. Section 3.2 explains the consistency guarantees that the system pro-
vides for entire files. Section 3.3 quantifies the probability of data loss (under
some assumptions), and finally Section 3.4 examines the performance charac-
teristics.

3.1 Availability of blocks

Under normal operation, all blocks are always available because of the repli-
cation in the distributed hash table. There are, however, some situations where
abnormal conditions in the network might affect the availability of certain
blocks.

3.1.1 Availability during a network split

Consider a network M which is partitioned into the two separate subnetworks
M1 and M2 by a network failure. Under these circumstances, it may not be
possible to retrieve a certain block in one of the subnetworks. Let |M1| and |M2|

be the number of nodes in M1 and M2, respectively. A block is then available
from a node in M1 if one of the r replicating nodes is in M1. We will proceed
with deducing the probability PM1 of this with the assumption that the hash
function distributes the block evenly over the nodes.

In the case where |M2| < r, at least one of the r replicating nodes will be in
M1 so the probability is PM1 = 1.

When |M2| ≥ r, we instead consider the probability of a block not being
available. A block is unavailable from a node in M1 if and only if all r replicat-
ing nodes are in M2. The number of combinations where all replicating nodes
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are in M2 is:
(

|M2|

r

)

=
|M2|!

r!(|M2| − r)!

The number of combinations for the entire network M is:
(

|M|

r

)

=
(|M1| + |M2|)!

r!(|M1| + |M2| − r)!

The probability for a block to be unavailable from any node in M1 must then
be:

PM1,un =

(|M2|
r

)

(|M|
r

)

Hence, the probability for a block to be available from some node in M1 is:

PM1 = 1 −

(|M2|
r

)

(|M|
r

)
= 1 −

|M2|!(|M2| + |M1| − r)!
(|M2| − r)!(|M2| + |M1|)!

Note that PM1 is the probability of a single block being available. The probabil-
ity of b blocks being available is simply (PM1)

b. Examples of how the probabil-
ity changes as a function of b and with different values of r are shown in Figure
3.1 for a symmetric network split and in Figure 3.2 for an asymmetric network
split.

As Figure 3.1 shows it is unlikely that it is possible to retrieve an entire
file during a symmetric network split if the file consists of many blocks and
moderate values of r are chosen, e.g. 3 ≤ r ≤ 5. Small files that only consist
of two blocks (the file identifier block plus one data block) are still retrievable
with a probability above 90%, though.

During an asymmetric network split where the requesting node is part of
the larger subnetwork, the probability of availability is much better as Figure
3.2 shows. Only very large files will not be retrievable. For a requesting node in
the smaller subnetwork the probability is unfortunately so low that the system
is completely useless. For instance, the probability of two blocks being avail-
able with r = 7 is only:

(

1 −
90!(90 + 10 − 7)!

(90 − 7)!(90 + 10)!

)2
= 28.4%

Hence, symmetric network splits will severely hamper the availability of
large files requested from any node, whereas asymmetric network splits mostly
affect the nodes in the smallest subnetwork.

3.1.2 Availability without a network split

Even when the network is not partitioned, it is possible that a block temporarily
cannot be retrieved:
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Figure 3.1: The probability of a given number of blocks being available in the subnetwork
M1 during a network split for different values of r with |M1| = |M2| = 50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

P
ro

ba
bi

lit
y 

of
 th

e 
bl

oc
ks

 b
ei

ng
 a

va
ila

bl
e

Number of blocks

r = 2
r = 3
r = 4
r = 5
r = 6
r = 7

Figure 3.2: The probability of a given number of blocks being available in the subnetwork
M1 during a network split for different values of r with |M1| = 90 and |M2| = 10.
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• If many nodes join the network within a short period of time, r of them
may end up closest to a block although it is not possible to retrieve the
block from them, yet.

• If a block is created in a split network that is subsequently reconnected,
the block may not reside on the r nodes closest to it.

Since the hash function distributes keys uniformly in the hash space, it is
unlikely that just r nodes joining could end up closest to a block – their iden-
tifiers are expected to be mapped to different places in the hash space. This is
also the case if the network was split into two equal sized subnetworks; the
hash function is expected to map to nodes on both sides of the network after
the connection has been reestablished.

Note that after some time the unavailable blocks will be republished to the
appropriate nodes as described in Section 2.2.6, and the blocks will then be
available again.

3.2 File consistency guarantees

On a local centralised file system all file references are kept on the same ma-
chine and all file operations are processed on the same caches with local file
system. When multiple users access the same file this ensures that all users
operate on the same copy of the file and see each other’s changes.

With a distributed file system, propagation delays and the lack of central
storage space results in concurrency problems. Weaker consistency guarantees
are then usually given to avoid abysmal performance. For instance, NFS op-
erates with a cache at both the client and server side [2]. Sometimes the cache
on the client slide will not be consistent with the actual file on the server, and
although NFS tries to minimise this problem, e.g. by adaptively lowering the
cache refresh intervals, it is only an approximation of the guarantee from a local
file system.

Our system provides a guarantee which is actually stronger: When a file is
requested we can guarantee that all received blocks belong to the same version
of the file. The data are not intermingled even if multiple nodes write concur-
rently to the same file.

To see this, recall from Section 2.3.1 that the file identifier is looked up as the
first step when a file is requested. This ensures that only blocks from that file
identifier version are requested. A file modification does not modify or delete
existing blocks except for the file identifier block which will always contain a
new file identifier hash. Hence, concurrent write and read operations do not
interfere.

However, our system is worse in guaranteeing that all nodes have the same
view of what is the latest version of a file. If multiple nodes write to the same
file, it is possible that some of the r nodes storing the file identifier block will
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end up with one version and the rest of the r nodes with another. Even without
concurrent writers, the same may happen during a network split – when the
network is reconnected, different versions of the same file identifier exist.

The latter situation is theoretically unavoidable if normal operation is per-
mitted during a network split since the disconnected nodes cannot communi-
cate.

The consequence is that different nodes may retrieve different versions of
the same file. We can only guarantee that eventually the problem will disap-
pear since the garbage collector will detect the two conflicting versions and
choose one of them, as described in Section 2.4.2.

3.3 Loss of data

Since nodes may crash or otherwise leave the system, all of the r nodes that are
replicating a number of blocks may be unavailable. In the worst case, none of
them ever rejoins and the blocks are completely lost.

In the following, we investigate the probability of this event to happen as
a function of the replication constant r and the republishing time interval Tb.
With the assumptions presented in Section 3.3.1 it turns out the probability can
be quantified, as shown in Section 3.3.2. Section 3.3.3 discusses the implications
of the estimate of the probability.

3.3.1 Analysis assumptions

First, we are considering the worst case so define a node failure to be a complete
node breakdown where all data on the node is lost. If the node afterwards
rejoins, it is as if it were a completely new node. This point of view makes it
possible to consider node failures as binary events – either a node is up and
functioning correctly, or it has failed and left the system.

Furthermore, we assume that the network under consideration will have
more than r nodes running at any given time so that it is possible to maintain r
replicas even if r− 1 nodes fail. We also assume that the republishing algorithm
given in Section 2.2.6 is correct in maintaining the r replicas. For convenience,
we assume it republishes the data instantly but the model we present is essen-
tially the same as long as the algorithm completes much faster than Tb.

The last assumptions we make concern the nature of node failures:

1. The probability of a node failing is independent of the time of day and
the day of the year.

2. Different nodes fail independently of each other.

The first assumption is obviously not true for any real system since the prob-
abilities vary over time. But a fixed overestimate of the probability can be ob-
tained by choosing the greatest probability for a node over time. The second
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assumption can be claimed to be true for such events as hardware failures (e.g.
disk crashes), but does not hold with failures that affect multiple machines,
such as lightnings or computer viruses.

The two last assumptions taken together means that the nodes fail with a
constant rate λ (e.g. one node per day).

3.3.2 The probability of loss of blocks

Given the assumptions in the preceding section, we can model the probability
of losing blocks. We proceed by doing that in three steps.

If all blocks are replicated r times, obviously at least r nodes must fail for
any blocks to be lost. Hence, we must obtain the probability of r or more nodes
failing, or more general, precisely k nodes failing. This is the first step.

But r or more nodes failing is in fact not a sufficient condition for data loss
since the failed nodes may not have any blocks in common. If the failed nodes
do not have any blocks in common, there will still be at least one replica of each
block somewhere in the system and no data is lost. Thus we must also obtain
the probability that given that k nodes have failed (where k ≥ r), at least r of
them have blocks in common. This is our second step.

The third step is to combine the results. We start by computing the proba-
bility of k nodes failing within some time interval.

The probability of k nodes failing

The probability of k nodes failing within some time interval is easily found if
we model the system as a Poisson process [18]. The model is valid because our
system with the assumptions from Section 3.3.1 satisfies the following proper-
ties [21]:

• The number of node failures in non-overlapping time intervals of a given
length are independent for all intervals. This is true because the failure
rate is constant λ.

• For a sufficiently small time interval the probability of a single node fail-
ure is proportional to time. This is also a consequence of the constant
failure rate.

• The probability for two or more node failures in a sufficiently small time
interval is essentially zero. This follows from the assumption of the inde-
pendence of the node failures. The probability of two nodes to fail in a
small interval is the product of the two probabilities of each node to fail
in the interval – this is much smaller than the probability of one of the
nodes to fail.
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For a Poisson process, the probability of k events happening within the time
interval t is distributed as [18]

Pf (t, k) =
(λt)ke−λt

k!
(3.1)

If we define the event to be a node failure, Pf (t, k) gives the probability that
k nodes have failed within the time interval t. Now observe that the k nodes
must fail within Tb time – else the blocks would be republished so that at least
r nodes were storing the block again. The probability we are looking for is thus
Pf (Tb, k) so we can proceed with the next step.

The probability of failed nodes having blocks in common

We now assume that k nodes have failed with k ≥ r and proceed with deducing
the probability that at least r of the failed nodes have some blocks in common,
or in other words that data is lost. The deductions are a little tricky because
the blocks are distributed to the nodes in accordance with the XOR topology
examined in Section 2.2.2.

Given a hash space with n nodes, divide the nodes into subtrees that are as
small as possible but still contains at least r nodes each. An example is shown
in Figure 3.3. With the assumption that the hash function distributes the nodes
evenly in the hash space, each subtree will then contain between r and 2r − 1
nodes.

01

1

0

0

1 0

1 0 01

01

2r− 1r + 1 r r + 3

1

2r− 1 r + 1 rr + 3

Figure 3.3: Example hash space where the nodes have been divided into eight subtrees. In
this example, r + 1 nodes are in the subtree where the node keys begin with 111, 2r − 1
nodes are in the subtree where the node keys begin with 110, etc. It was possible to divide
the hash space into subtrees that each contains between r and 2r − 1 nodes because the hash
function is assumed to distribute the nodes evenly.

Because of the XOR metric the nodes in each subtree are responsible for
all blocks that have keys in their subtree, but not for any other blocks. This
simplifies the analysis much because we only need to consider what happens
when nodes fail inside a subtree.

Now observe that r nodes failing in any of the subtrees may cause data loss:
the blocks in a subtree will certainly be lost if the subtree contains r nodes; if
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the subtree contains 2r − 1 nodes, the blocks may or may not be lost (see Figure
3.4).

0 11

1

0

0

1 0

1 0 01

01

011 0 01 0 00 01 1 1 1 10

Figure 3.4: An example of a subtree with 2r − 1 = 9 nodes (r = 5). The second and third
row of nodes show possible failure outcomes that cause data loss (the black nodes are failed
nodes). The fourth and fifth row show outcomes that do not cause data loss.

We assume the worst and pretend that r failed nodes in any subtree leads
to lost blocks. Thus the probability of at least r failed nodes having blocks in
common given that k nodes have failed can be reformulated as being the prob-
ability of at least r of the k nodes being in the same subtree.

The probability of at least r out of k nodes being in the same subtree can be
found by counting. First choose one node arbitrarily to be a failed node. The
failed node will be in one of the subtrees. Then the probability of r − 1 nodes
failing in the same subtree out of the n − 1 nodes left must be calculated. We
do this by counting the total number of ways the failed nodes may occur in in
the system and counting the number of ways that leads to r − 1 failed nodes in
the same subtree:

• There are k − 1 failed nodes left to choose from so the failed nodes may
in total occur in

(n−1
k−1

)

different ways over the network.

• There will be r − 1 more failed nodes in the same subtree if and only if
r − 1 nodes from the k − 1 failed nodes are in the subtree. This leaves
k − 1 − (r − 1) = k − r node failures to be distributed arbitrarily over any
of the remaining n − r nodes in total, which can be done in

(n−r
k−r

)

ways.

The counting of node failure outcomes leading to data loss is illustrated in
Figure 3.5.

Hence, the probability Ps of losing data in a network of size n given that
k nodes have failed must be at most (since we assumed the worst during the
analysis):

Ps(k) =

(n−r
k−r

)

(n−1
k−1

)
=

(k − 1)!(n − r)!
(k − r)!(n − 1)!

(3.2)
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r + 1 r 2r− 1 r + 1

0 failed

k failed

r failed, data is lost

1 failed, determines subtree

Figure 3.5: Example of node failure outcomes where n = 16, k = 8 and r = 3 that lead to
data loss (the black nodes are failed nodes). The nodes have been divided into subtrees that
contain r to 2r − 1 nodes. First one node fails which gives a particular subtree. Then r − 1
nodes must fail in the same subtree to cause data loss. Finally, the remaining k − r node
failures may happen on arbitrary nodes.

We are now ready to proceed to step three.

Combining the results

The probability that both k nodes have failed and that the data is lost given
that k nodes have failed is the product of the probabilities for these two events,
Pf (Tb, k)Ps(k). Since data loss may occur for any k ≥ r, the probability Pl of
losing data is

Pl =
n

∑
k=r

Pf (Tb, k)Ps(k) (3.3)

Pl is plotted as a function of Tb for various values of r in Figure 3.6. Larger
values of r and smaller values of Tb give a lower probability of data loss.
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Figure 3.6: The probability of losing blocks (Eq. 3.3) with n = 96 and λ = 1/24 so that
one node crashes every 24 hours.

Equation 3.3 gives an estimate of the probability of losing blocks in one
time period Tb. There will be many such time periods when a system is put
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into operation. Observe that for the system not to lose data at all, it must not
lose data in any of these time periods. Thus if the network conditions do not
change, the probability of not losing data over q periods is (1 − Pl)

q. Then the
probability Pl(q) of losing data over q periods is:

Pl(q) = 1 − (1 − Pl)
q (3.4)

Pl(q) is plotted as a function of q in Figure 3.7. When r ≥ 3 it takes more than
10,000 years before the probability of data loss is 50% with n = 96, λ = 1/24
and Tb = 1 hour. This shows that the design of the distributed hash table is, at
least theoretically, extremely robust.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  100  10000  1e+06  1e+08  1e+10  1e+12  1e+14

P
ro

ba
bi

lit
y 

of
 lo

ss

Time elapsed (years)

r = 2
r = 3
r = 4
r = 5

Figure 3.7: The probability of losing blocks (Eq. 3.4) with n = 96, λ = 1/24 and Tb = 1
hour.

3.3.3 Implications of the probability

As Figure 3.7 shows, the preceding analysis indicates that data loss is very
unlikely with appropriate values of r and Tb. It should be taken into account
that the analysis is for a system in normal operation (with no virus attacks, no
lightnings etc.). But it should be stressed that the assumption is that the blocks
on the failed nodes are completely lost. In a realistic environment, it seems
more likely that the data will in fact be available as soon as the nodes have
been rebooted.

In spite of this, the analysis is still useful as an estimate of the availability
of all blocks at all points in time. Hence, the analysis indicates that our system
will be highly available. It should also be kept in mind that some users may be
served even if some blocks are missing temporarily since only a fraction of all
files will be accessed at any given moment.
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Apart from the insights that Eq. 3.4 provides into how the system reacts
over time with failures, the equation can also be used to estimate the effect of
choosing various values of Tb and r.

The trade-off is between resource usage and availability. Decreasing Tb in-
creases the number of REPLICATION OFFER messages the system needs to send
(thus using extra bandwidth), but prolongs the time the system is expected
to run before data is lost. Increasing r makes write operations slower and in-
creases the disk space and bandwidth used, but similarly prolongs the ex-
pected time. The performance considerations are discussed in more detail in
Section 3.4.

3.4 Performance characteristics

It is difficult to analyse the performance of the design in general since it de-
pends on the particular network and the usage patterns. In spite of this, Sec-
tion 3.4.2 tries to deduce some general properties of the scalability of the read
and write operations when many nodes are active. Section 3.4.1 analyses the
communication overhead in the design, and Section 3.4.3 discusses how well
the design supports various file access patterns.

3.4.1 Communication overhead of the system

The system sends more data than just the user data when reading and writing
files, and similarly sends extra information to ensure the r replicas are kept. We
define the overhead o to be the ratio between the size of this extra data se and
the size of the user data su, o = se/su.

For the following examples, we assume that the maximum size of a block
is B = 60, 000 bytes and the size of a key is K = 20 bytes, which is the case for
SHA-1 hash keys. The size of a file identifier block is I = 41 bytes and the size
of a file is denoted by | f |.

For reading a file f , the extra data sent is the file identifier and the RETRIEVE

BLOCK messages (each containing one key) for requesting blocks:

or =
(d| f |/Be + 1) K + I

| f |

The overhead when reading is shown in the second and third column of Table
3.1.

The overhead for writing a file is much larger because r − 1 extra copies
of the file must be stored. Also, each STORE BLOCK message contains the key
of the block in addition to the block itself, and r file identifiers must be sent.
Hence, the overhead is:

ow =
(r − 1)| f | + r(d| f |/Be + 1)K + rI

| f |
(3.5)
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|f| or or ow ow ob ob

30 kb 0.081 kb 0.27% 90.3 kb 301.1% 0.16 kb 0.53%
2 Mb 0.74 kb 0.04% 6.002 Mb 300.1% 2.8 kb 0.14%

100 Mb 33.4 kb 0.03% 300.1 Mb 300.1% 133 kb 0.13%

Table 3.1: The overhead of reading, writing and for sending republication offers for files of
various size. A network with r = 4 and Tb = 1 is used in the calculations. The overhead is
both represented as the number of bytes and as the percentage of the file size.

The overhead of writing is shown in the fourth and fifth column of Table 3.1.
Clearly, when r is varied the above expression is dominated by the first term
so ow ≈ ((r − 1)| f |)/| f | = r − 1.

Some extra data is also sent from time to time to republish the data. If it is
not necessary to actually send any blocks, then the only data sent is the replica-
tion offers. At least one replication offer must be sent to each of the r − 1 other
replicating nodes for each block. The offer itself is just the block key of size K
and must be sent each Tb; hence the republishing overhead for a file is:

ob =
r(d| f |/Be + 1)K

| f | × Tb

The overhead of republishing per hour is shown in the sixth and seventh col-
umn of Table 3.1.

Finally, some extra data is sent to maintain the routing tables. Every node
updates its routing table every Tr hour and this is done, as described in Section
2.2.3, by splitting the nodes into groups and sending a lookup for each group.
Since the nodes are split into log2(n/r) groups, this will result in log2(n/r)
lookups. Each lookup message contains a key and each response contains r IP
addresses and port numbers, i.e. 6 bytes per host. Hence, the extra data for
maintaining the routing table are:

om =
log2(n/r)(K + 6r)

Tr

The extra data used to maintain a routing table in a network with n = 500,
r = 4 and Tr = 1 hour is 306.5 bytes per hour or 0.09 bytes per second.

The various communication overheads of our system are relatively inex-
pensive, except the overhead of writing which is proportional to r because the
r − 1 replicas are overhead. The overhead for the periodic replication and rout-
ing table updates is small enough to let the system scale to large amounts of
data and large networks. In the next section we examine if this is also the case
for reading and writing.
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3.4.2 Scalability of reading and writing

For a distributed shared file system, the network is likely to become the bottle-
neck. The load on the network increases as the number of simultaneous reading
or writing nodes increases. This will lead to much increased response times at
some point, and eventually packet loss. The point where the network becomes
congested depends on how the shared file system is designed.

We define the total throughput in the network to be the total amount of user
data read or written in all nodes within some period of time. The total through-
put in a centralised file system such as NFS is bound to the bandwidth of the
network link between the file server and the network. Theoretically it can scale
linearly up to the bandwidth limit and no further.

Our system does not possess this limit and can for reading in principle scale
up to the sum of the bandwidths from each node to the network. In the best
case, when multiple nodes are reading they will not interfere with each other,
and the system will not penalise them for being active at the same time. The
situation is the same for writing, but since the overhead for a write operation
is r − 1, the total throughput is degraded by a factor.

Hence, it is to be expected that Heurika can outperform a centralised file
system when many nodes are active at the same time. Whether this is in true
in practise will be explored in the tests in Chapter 5.

3.4.3 Access characteristics

The system does not differ between sequential and random access to files.
When the file identifier has been retrieved, the key for any block in a file can
be computed. Hence reading files can be supported in the same way as a local
filesystem.

Unfortunately, the same is not true for writing files since the system does
not support partial modification of files. If a single file data block is modified
and stored in the network, all other blocks in the file must be rewritten since
they get a new key because the file identifier has changed. This problem cannot
be solved easily because the changed file identifier is necessary for ensuring
that files do not end in an inconsistent state.

Log files is one prominent application that needs efficient support for par-
tial modifications since log files are usually built by appending one line at a
time.
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Implementation

This chapter describes the implementation of a prototype of our system. The
purpose of the prototype was to enable us to explore how our system performs
in various situations, as described in Chapter 5.

The distributed hash table in Section 2.2 and the file system in Section 2.3
have been implemented with 4000 lines of C++ code. The garbage collector
described in Section 2.4 has not been implemented due to the lack of time.

Section 4.1 presents important concepts regarding the protocol, routing ta-
ble issues and division of labour in the implementation of the distributed hash
table. Section 4.2 gives an overview of the implementation of the file system.

4.1 Distributed hash table

The main concept of the implementation of the distributed hash table are work
items which represent the major operations that the distributed hash table may
perform. When an operation is requested, a work item is created and placed
in the ready queue. A worker from the thread pool will then eventually get to
the work item and process it. Work items that have been partly processed and
need a reply from the network to continue are placed in a waiting queue. They
are later moved to the ready queue if a reply comes in or a time out occurs.

The following sections give an overview of the classes and discuss selected
topics in more detail.

4.1.1 Class overview

The classes of the distributed hash table are illustrated in Figure 4.1. The fol-
lowing descriptions will briefly explain each class; thread classes are denoted
by the index T.

DHT: Represents the external interface of the distributed hash table (the put
and get methods) and glues the other major classes together by holding a
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Figure 4.1: The classes in the distributed hash table component. Note that the WorkItem
suffix for the subclasses of WorkItem has been left out.

WorkerPool, WorkQueue, Maintainer, NetworkInterface, NetworkLis-
tener, BlockTable and a HostTable.

WorkerPool: Represents a pool of idle workers that are ready to be assigned a
task. Multiple workers are needed because some tasks are blocking (e.g.
saving a block to disk). The number of workers is set as a fixed parameter
in our prototype but should ideally be chosen dynamically.

WorkerT: Represents a worker that processes work items, by invoking the do
process method on the various work items.

WorkQueue: Represents a ready and a waiting queue with methods for adding
the appropriate work item and grabbing the next ready item. It also facil-
itates getting a waiting work item from a sequence number once a reply
message is received.

WorkItem: The abstract base class for queued work items. It has the following
subclasses:

PutWorkItem: Represents a put block request to the hash table that dis-
tributes the block to the r closest nodes (by using LookupWorkItem
and SendBlockWorkItem).

GetWorkItem: Represents a get block request on the hash table. Uses
LookupWorkItem and RetrieveWorkItem.
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AnswerableWorkItem: Represents an operation that is awaiting a net-
work message and needs to accept a message before being able to
continue. LookupWorkItem, SendBlockWorkItem and LookupWorkItem
are subclasses that are awaiting a reply.

LookupWorkItem Represents a look up operation for finding the r clos-
est nodes.

SendBlockWorkItem: Sends a block to a single node for storage.

RetrieveWorkItem: Retrieves a block from a single node.

IncomingMessageWorkItem: Represents an incoming message from an-
other host. The message may be a reply in which case the appro-
priate work item is taken out of the waiting queue, or it may be a
request.

RepublishWorkItem: Represents the republishing operation for sending
out replication offers to r − 1 other nodes.

ResendWorkItem: For resending a message when a work item in the
waiting queue has had a timeout.

TimeoutWorkItem: Represents a fatal timeout after too many consecu-
tive failed resend operations. The work item that experiences the
timeout is taken out of the waiting queue and should continue un-
der the assumption that the recipient node is unreachable.

Each subclass implements the abstract do_process method of WorkItem.

MaintainerT: Represents a maintainer that assures that work items in the wait-
ing queue do not wait forever and that the block table and the host table
are kept up-to-date periodically. It creates ResendWorkItems and Time-
outWorkItems for items that have been too long in the waiting queue,
and creates RepublishWorkItems and LookupWorkItems for the main-
tenance of the block table and host table. The periods between maintain-
ing the block table and host table are randomised to avoid that all nodes
perform the maintainence at the same time.

Message: Represents the base class for the protocol primitives described in
Section 2.2.5. Each protocol message, both request and reply, has a cor-
responding class that contains the data structure of the protocol primi-
tives, i.e. the data that is transmitted and received over the network. For
instance, RETRIEVE BLOCK corresponds to RetrieveBlockMessage. Note
that the subclasses of Message are not shown in the class diagram (to
avoid cluttering it).

RawMessage: Represents a byte sequence of a Message that is ready for trans-
mission.
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Protocol: Represents the protocol specifications, see Section 2.2.5, that converts
the various messages to a RawMessage. It also supports converting a
RawMessage back to its corresponding Message.

NetworkInterface: Represents the network interface for host-to-host commu-
nication. It has a method for sending and a method for receiving raw
messages.

NetworkListenerT: Listens on the network for incoming messages and cre-
ates a IncomingMessageWorkItem on the ready queue for each received
message.

BlockTable: Holds the blocks of a node in a hash table keyed on the block key
and facilitates getting and saving blocks.

Block: Represents a block.

Key: Represents an m-bit hash key. It supports setting and getting the n’th bit
(used for the host table maintenance) and calculating the XOR distance
between two keys.

HostTable: Holds the list of known hosts with methods for getting the nodes
between two keys (used for the host table maintenance) and looking up
nodes closest to a key.

Host: Represents the contact information for a host with an IP address and a
port.

The following sections dive into the key aspects of the distributed hash ta-
bles and present the associated code snippets.

4.1.2 Work items and queues

Work items are at the heart of the system since all requests in the distributed
hash table are processed through them. As shown in the class diagram, Fig-
ure 4.1, all work items derive from the abstract class WorkItem that provides
a common interface consisting only of the method process (which in turn calls
do_process).

The work items are processed by the worker threads. All work items, when
not being processed, are situated in one of the queues in WorkQueue. When
work items are first created they are queued in the ready queue, waiting for a
worker to grab it. The workers ask the ready queue for work to do by calling
the grab_ready_item method on WorkQueue. The method grab_ready_item is
shown in Listing 4.1 and explained below.

Listing 4.1: WorkQueue’s grab_ready_item
1 WorkItemPtr WorkQueue : : grab_ready_item ( )
2 {
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3 ready_items . wait ( ) ;
4

5 ready_lock . enterMutex ( ) ;
6 WorkItemPtr item = ready_queue . f r o n t ( ) ;
7 ready_queue . pop_front ( ) ;
8 ready_lock . leaveMutex ( ) ;
9

10 return item ;
11 }

If the ready queue is empty, the caller will wait on a semaphore (Line 3)
until an item is added to the queue and the semaphore is incremented. When
no items are present in the queue, all unemployed workers will be blocked
until more work arrives.

When there is work to do, the calling worker decrements semaphore and
grab an item from the queue. Since the distributed hash table is multi-threaded
the shared data structures must be protected by mutexes. The mutex ready_lock
protects the critical region in Line 5-8. When the work item has been extracted
from the queue, it is returned to the caller.

The two main work items are PutWorkItem and GetWorkItem. Both need
to perform subtasks, e.g. initiate a lookup. This is done by creating the appro-
priate work item, e.g. a LookupWorkItem, setting it up to pass back control
when it is done by registering two callback functions, one for success and one
for failure, and then calling its process method. A typical example is shown in
Listing 4.2 (slightly edited for readability).

Listing 4.2: PutWorkItem’s do_process
1 void PutWorkItem : : do_process ( )
2 {
3 / / f i r s t do a l o o k u p
4 shared_ptr<LookupWorkItem> lookup (new LookupWorkItem( key ) ) ;
5 lookup−>add_dependent ( shared_from_this ( ) ) ;
6 lookup−>on_completed = bind(&on_lookup_completed , t h i s ) ;
7 lookup−>on_fa i led = bind(& on_lookup_fai led , t h i s ) ;
8 lookup−>process ( ) ;
9 }

The LookupWorkItem first asks the host table for the r closest hosts which
are then sent a lookup message through the network interface and afterwards
awaits a reply. Since this may take some time and thus block the worker if it
were waiting for it, the work item is transfered to the waiting queue and the
associated worker will then immediately be ready for a new task.

Because of this arrangement, the lookup work item derives from the ab-
stract subclass of WorkItem called AnswerableWorkItem. Classes that derive
from AnswerableWorkItem must implement the two methods do_accept and
timeout. do_accept will be called when a reply is received, and timeout is
called when it has been detected that it was not possible to get through to
the intended receiver, i.e. the outgoing message has been resent the maximum
allowed number of times without an answer.
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When the work item has finished its task, it passes its results back to the
creator through the provided callback functions.

4.1.3 Organising hosts

When sending and retrieving blocks the host table is consulted to find the hosts
that are closest to the block key. The method get_closest in HostTable takes as
input the block key and the number of wanted nodes to return (usually simply
r).

Listing 4.3 presents the part of the method that iteratively divides the hash
space into smaller subranges to find a range that contains just enough hosts to
satisfy the request.

Listing 4.3: HostTable’s get_closest
1 Key h o s t _ s t a r t , host_end ;
2 for ( i n t i = 0 ; i < Key : : key_s ize ; + + i ) {
3 h o s t _ s t a r t . value [ i ] = 0 ;
4 host_end . value [ i ] = 2 5 5 ;
5 }
6

7 i n t n = Key : : key_s ize∗8 −1;
8

9 for ( ; n >= 0; −−n ) {
10 / / h a l f t h e s e a r c h s p a c e
11 bool n t h _ b i t = block_key . g e t _ n t h _ b i t ( n ) ;
12 h o s t _ s t a r t . s e t _ n t h _ b i t ( n , n t h _ b i t ) ;
13 host_end . s e t _ n t h _ b i t ( n , n t h _ b i t ) ;
14

15 i n t s i z e = nodes_in_range ( h o s t _ s t a r t , host_end , wanted_nodes ) ;
16

17 i f ( s i z e <= wanted_nodes )
18 break ;
19 }

The keys host_start and host_end, defined at Line 1, define the bounds of the
current interval and are first set to all 0s and all 1s, Line 2-5. The loop index
n starts at the most significant end of the keys (number of bits in a key minus
1), at Line 7. Then the loop in Lines 9-19 simply consider one bit of the block
key at a time, each time cutting the current interval in half. At some point, the
current interval will contain fewer than the wanted number of nodes and the
loop stops, Line 17.

The rest of the method (not shown) takes one step back, sorts the found
hosts by their XOR distance to the block key, removes the most distant nodes
from consideration until there is at most the wanted number of nodes back,
and finally returns the result.

4.1.4 Composition and decomposition of messages

Making a protocol message ready for transmission over the network involves
composing a RawMessage of the message. This is handled by using the com-
pose functions in Protocol that takes a message as input and returns a RawMes-
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sage. A RawMessage is converted back into its equivalent message by using
the decompose function, see Listing 4.4.

Listing 4.4: The interface of Protocol
1 namespace Protoco l
2 {
3 RawMessagePtr compose ( const AckMessage &m) ;
4 RawMessagePtr compose ( const NegAckMessage &m) ;
5 RawMessagePtr compose ( const FindClosestMessage &m) ;
6 RawMessagePtr compose ( const FindClosestReplyMessage &m) ;
7 RawMessagePtr compose ( const RetrieveBlockMessage &m) ;
8 RawMessagePtr compose ( const RetrieveReplyMessage &m) ;
9 RawMessagePtr compose ( const PingMessage &m) ;

10 RawMessagePtr compose ( const Replicat ionOfferMessage &m) ;
11 RawMessagePtr compose ( const StoreBlockMessage &m) ;
12

13 boost : : shared_ptr<Message > decompose ( const RawMessage &composed ) ;
14

15 . . .
16 }

A RawMessage consist of a byte sequence representation of a Message.
Listing 4.5 shows one example of how this is done.

Listing 4.5: compose function for RetrieveBlockMessage that uses fill_header
1 void f i l l _ h e a d e r ( RawMessage &raw , const Message &m,
2 MessageType m_type )
3 {
4 raw . b u f f e r [ 0 ] = m_type ;
5

6 ∗ r e i n t e r p r e t _ c a s t < u i n t 3 2 _ t ∗>(&raw . b u f f e r [ 0 ] + 1 ) = htonl (m. seqno ) ;
7 raw . host = m. host ;
8 }
9

10 RawMessagePtr Protoco l : : compose ( const RetrieveBlockMessage &m)
11 {
12 i n t s i z e = header_s ize + Key : : key_s ize ;
13

14 RawMessagePtr raw (new RawMessage ( s i z e ) ) ;
15

16 f i l l _ h e a d e r (∗ raw . get ( ) , m, r e t r i e v e _ b l o c k _ t y pe ) ;
17

18 m. key . to_raw ( r e i n t e r p r e t _ c a s t <unsigned char∗>(raw−>b u f f e r+header_s ize ) ) ;
19

20 return raw ;
21 }

In Line 12 the size of the byte sequence is calculated. Next step is to fill in the
data. First the header is filled in, at Line 16, by calling fill_header which simply
sets the first byte to the type of the message and fills in the message sequence
number. Platform byte ordering is taken into account, Line 6, by converting
the sequence number into the network byte ordering before copying it into the
byte sequence.

When the header has been filled in, the rest of the message is copied into
the byte sequence. For RetrieveBlockMessage this is simply done by copying
the contents of the key to be received.
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4.2 File system

The file system component lets an application work with the high-level ab-
straction of a file by taking care of the lower level calls to the distributed hash
table and the organisation of blocks.

As with an ordinary UNIX file system, all calls to the file system are block-
ing, meaning the the caller will be blocked until the request has been fully
processed. Given the architecture of the distributed hash table component, it is
actually very easy to also provide an asynchronous interface if one is needed.

We proceed with a brief description of the prototype of the file system. It
consists of one class only:

NetFile: Represents a network file and providing methods for opening, read-
ing, writing, seeking, deleting and closing a file.

The constructor opens the file by requesting the file identifier block from
the distributed hash table. If the file has been initialised in reading state and
the identifier block is not found, an exception is thrown. On the other hand,
if the file is opened for writing the file will be created if no identifier block is
found.

The read operation is implemented by retrieving all blocks from the current
position in the file and up to the specified number of bytes, in parallel for better
performance. The relevant bytes can then be extracted.

The write operation is implemented by first retrieving all blocks of the file
before the actual data are written to it. The blocks are then distributed under
a new key, also in parallel. The new file identifier block is not written until the
file is closed.

Seeking is achieved by shifting the current position in the file by a given
offset, which may be defined as relative in both directions or static. Deleting is
done simply by retrieving the directory file where the file is situated, removing
its entry in it and writing the directory again, letting the garbage collector take
care of the rest.

Closing the file consists of writing the file identifier block. The following
code snippet from the close method illustrates how the file system communi-
cates with the distributed hash table and how the file system ensures that its
operations are blocking.

Listing 4.6: NetFile’s close and on_close_file
1 void NetFi le : : c l o s e ( )
2 {
3 i f ( s t a t e = = wri t ing ) {
4 DHT : : i n s t a n c e ( ) . put ( ident_block_key , compose_ident( ident_b lock ) ,
5 bind(& NetF i le : : o n _ c l o s e _ f i l e , th is , _1 ) ) ;
6 block . wait ( ) ;
7

8 i f ( e r ror_occurred ) {
9 error_occurred = f a l s e ;

10 throw CloseError ( ) ;
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11 }
12 }
13 }
14

15 void NetFi le : : o n _ c l o s e _ f i l e ( bool complete )
16 {
17 i f ( ! complete )
18 error_occurred = t rue ;
19

20 block . post ( ) ;
21 }

On Line 4 the identifier block is passed to the distributed hash table. Be-
sides the key of the identifier block and the block itself, a callback function,
on_close_file, is given to the put method. The callback is used when the dis-
tributed hash table has completed the task and needs to notify the file system
of this. The put method will return immediately after having placed a work
item in the work queue, and the file system therefore waits on the semaphore
block, Line 6.

When the file indentifier has been distributed, on_close_file is called by a
thread from the distributed hash table. A check for errors is performed and
then the block semaphore is signalled at Line 20. This means that close can
continue execution. It does so by checking if an error occurred, Line 8, throwing
an exception if that is the case, or else just returns.
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Tests

This chapter describes an empirical evaluation of the prototype described in
Chapter 4. The purpose of testing our prototype is to gain sufficient evidence
that our design fulfills the requirements in Section 1.4, and further to show that
some of the theoretical characteristics in Chapter 3 hold in practise.

Section 5.1 describes the environment used to simulate the network, Sec-
tion 5.2 focus on how efficient the use of replication is in keeping all blocks
available, and finally Section 5.3 examines the performance of the system. Ful-
fillment of the design requirements is discussed in the conclusion of the report
in Chapter 6.

The implementation has been tested for correctness through programmed
test cases. The test cases cover the algorithms necessary for conducting the
experiments described in the following.

5.1 Test environment

The tests have been conducted in a simulated network environment main-
tained by the dummynet tool [13]. dummynet is included in the ipfw firewall on
FreeBSD and supports sending messages through special pipes with associated
queues and restrictions on bandwidth. Combined with aliasing of IP addresses
to the local host, this enables one to setup a complete virtual network on a sin-
gle machine with bandwidth restrictions, switches and realistic packet delay
and loss when the network becomes congested. The programs under test must
simply bind themselves to certain IP addresses.

Unfortunately, dummynet does not come with any tools to setup a network
so instead we have written a small program that outputs the rules for a local
area network connected with switches. The virtual network used for the tests
described in the following is shown in Figure 5.1.

The benefit of using dummynet is that it has very minimal overhead com-
pared to virtual computers such as VMWare [19], allowing us to run larger
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N74N73N72N50N49N48N26N25

100 Mbit/s

10 Mbit/s 10 Mbit/s 10 Mbit/s 10 Mbit/s

N24 . . . . . . . . . N96N1 N2 . . .

Figure 5.1: The virtual network consists of four subnetworks. Each subnetwork contains 24
nodes and each node is directly connected to a 10 Mbit/s switch. The four subnetworks are
connected to each other with 100 Mbit/s links to a backbone switch.

tests on the same hardware. Furthermore, the program does not have to be
specifically written for a simulation environment as required in other virtual
networks such as ns-2 [10].

Since our tests are run in the simulated environment shown in Figure 5.1,
the following should be kept in mind:

1. There is no other traffic on the network.

2. We test only one size and one particular simple type of network, namely
the star topology shown in Figure 5.1.

3. A large number of instances of the test programs are running on a single
machine – there is one process for each node so 96 instances in total. This
means that during periods with peak load, e.g. in the performance test,
many processes are competing for processor time.

The third problem was actually the reason that we let the test system use
10 and 100 Mbit/s links instead of 100 and 1000 Mbit/s links. The test hard-
ware (an AMD Athlon XP 2700+) was not fast enough to support the higher
bandwidths.

5.2 Robustness of the system during node crashes

This test measures how many replicas are available over time when nodes are
killed with a constant rate.

The purpose of the test is to evaluate the robustness of the use of repli-
cation in ensuring that blocks are not lost. Ideally, we would have preferred
to verify the data loss probability predicted in Section 3.3, but unfortunately
the predicted probabilities are so small that they are difficult to test with the
dummynet framework which runs in real time.

Instead we stress the system by taking nodes down at rate greater than the
republishing interval Tb. This enables us to see how well the replicas ensure
availability and how well the republishing algorithm performs.
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5.2.1 Test setup

The 96 nodes are started with r = 3 and after the network has been setup, each
writes a 550 kbyte file. This ensures that there are approximately 33 blocks per
node. Tb = 15 minutes instead of one hour to speed up the test. After a short
pause to ensure that all write operations are finished, a random node is killed
every T minutes until all nodes except one have been killed.

We repeated the test five times with T = 5 minutes and five times with
T = 1 minute. This means that three and fifteen nodes are killed per republish
interval, respectively.

5.2.2 Test results

Figure 5.2 and 5.3 show the fraction of lost blocks as a function of the number
of nodes killed, with 5 and 1 minute between nodes were killed, respectively.

To get a better picture of what is happening in the system during the tests,
Figure 5.4 and 5.5 show the fraction of blocks that have 3, 2, 1 and 0 replicas
during a typical test run with 5 and 1 minute between nodes were killed, re-
spectively.

5.2.3 Evaluation of the results

The results show that the use of replication is a very powerful technique. With
r = 3, one would perhaps expect that blocks would be lost quickly when three
nodes are killed per republishing interval. Figure 5.2 illustrates that this is not
the case, and Figure 5.4 shows that the republishing algorithm keeps up pace
with a good margin until the network has been reduced to about 96 − 80 = 16
nodes.

Even when fifteen nodes are killed per republishing interval, as shown in
Figure 5.3, the system keeps 90% of the blocks until the network is reduced to
96 − 70 = 26 nodes.

An explanation for these surprising results can be found in the theoretic
analysis in Section 3.3.2. The probability Ps of actually losing data in a network
of size n = 96 given that r = 3 nodes have failed is less than

Ps =
(3 − 1)!(96 − 3)!
(3 − 3)!(96 − 1)!

=
2

95 × 94
= 0.0226%.

5.3 Maximum read and write throughput

This test measures the total throughput of reading and writing with different
values of r and different numbers of nodes that read and write simultaneously.

The motivation for the test is to explore how the system scales when multi-
ple nodes are reading and writing at the same time, and to see if the write over-
head predicted in Section 3.4 to be ow ≈ r − 1 holds in practise. As described
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Figure 5.2: 96 nodes are started and the test kills one node every fifth minute. No blocks are
lost until 90 nodes have been killed.
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Figure 5.3: 96 nodes are started and the test kills a node every minute. No blocks are lost
until between 25 and 45 nodes have been killed. When 70 nodes have been killed, the number
of lost blocks increases dramatically.
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Figure 5.4: A closer view of a test run where a node is killed every fifth minute. The figure
shows the fraction of blocks that have 3, 2, 1 and 0 replicas. 90% of the blocks have 3 replicas
until about 50 nodes have been killed.
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Figure 5.5: A closer view of a test run where a node is killed every minute. The number
of replicas is much more unstable compared to Figure 5.4. Notice the oscillations; their
period is about 12-15 minutes. Compare this with Tb = 15 minutes. The imprecision can
be attributed to the fact that Tb is randomised a little to avoid having all nodes republish at
the same time.
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in Section 3.4.2, one may expect the total throughput of the system to be able
to scale beyond what a centralised shared file system can deliver because all
communication does not have to go through the backbone The maximum total
throughput for a centralised shared file system for the 100 Mbit/s backbone
used in this test is about 10-11 Mbyte/s.

5.3.1 Test setup

The 96 nodes are started at the same time with n nodes as active nodes and the
other 96 − n nodes as passive nodes. The passive nodes simply participates in
the network without reading or writing anything, while the active nodes run
the following program once:

1. Wait until a predefined point in time common to all active nodes to en-
sure that the network has been setup.

2. Start a timer and start writing a 2 Mbyte file.

3. When the writing is finished, record the value of the timer and log the
throughput (2 Mbyte divided by the recorded value). Then wait until
another predefined point in time to ensure that all n nodes have finished
writing.

4. Start a timer and read one of the 2 Mbyte files that have just been written
but not the file that the node has written itself and not a file that one of
the other nodes is reading.

5. When the reading is finished, record the value of the timer and log the
throughput (again 2 Mbyte divided by the recorded value). Then wait a
little longer to ensure that all nodes have finished reading.

Note that the active nodes start writing at the same time and start reading
at the same time, and that the two activities do not overlap. Since the tests
are short, routing table maintenance and republishing do not interfere with
the results. During the tests, the blocks are never actually saved to the hard
disk but simply kept in memory to avoid the single disk on the test machine
becoming a bottleneck.

The test is repeated by killing all Heurika processes and starting them over
again to ensure that the data from a previous test is not still being stored by the
passive nodes.

5.3.2 Test results

The results of the tests were three test run sets of throughput values from each
node for read and for write with the replication constant r = 1, 2, . . . , 6 and with
the number of active nodes n = 1, 2, . . . , 45 (i.e. 3 × 2 × 6 × 45 sets of values).
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Appendix A contains plots of the throughputs. Each figure in the appendix
shows the throughput of every node in each test run as a function of n. The
average throughput is shown as a bold line.

The average of the total throughputs for the three test runs is shown for
read in Figure 5.6 and for write in Figure 5.7, both with total throughput as a
function of n.

5.3.3 Evaluation of the results

Figure 5.6 and 5.7 show that the system does indeed scale well, in fact close
to linearly in n when reading! The throughputs for reading do start growing
slower at about 35 active nodes. This could be because the network becomes
congested, but it could unfortunately also be because our test machine was too
slow to keep pace. Anyway, the system is clearly able to handle more than 1/3
of the nodes being active at the same time without penalising their throughput.

One interesting aspect of the read throughput is that higher values of r
seems to give slightly better performance as shown in Figure 5.6. We attribute
this to the fact that a reading node will have more nodes to choose from when
retrieving a block with higher values of r. This helps balancing the load.

Even though the total write throughputs also scale well, albeit apparently
sub-linearly in n as shown in Figure 5.7, the test does highlight that the write
speed is slowed down much when the data are replicated. Since setting r = 1
or r = 2 is dangerous from an availability and data loss perspective unless
the nodes are very stable, this slowdown is a necessary consequence of the
design. Of course, a real implementation can hide the problem from the user
by distributing the blocks in the background. We further discuss optimising
some of the replicas away for short-lived files as a suggestion for future work
in Section 7.5.

The graphs in Appendix A show that the individual read and write through-
puts are quite close to the averages so that the graphs in Figure 5.6 and 5.7 are
meaningful (at least for n ≤ 35).

One thing that must be kept in mind is that the tests used a constant and
relatively large file size. Hence, the results do not reflect how the system would
handle a realistic usage pattern with a mixture of small and large files. The
throughput is expected to be lower when processing many small files since
more file identifiers must be retrieved. On the other hand, the file identifiers
are quite small so more nodes can be expected to be active at the same time
without disturbing each other.
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Figure 5.6: Total read throughput averaged over the three test runs. The throughputs scale
linearly up to about 35 active nodes. Note that the throughput seems to be slightly better
for higher values of r.
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Figure 5.7: Total write throughput averaged over the three test runs. The throughputs scale
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Conclusion

This chapter presents the conclusions of the project. We start by summarising
the findings of the project in Section 6.1 and conclude in Section 6.2 by exam-
ines the achievements of the project in comparison with the project aims as
listed in Section 1.4.

6.1 Summary

In Chapter 1 we reasoned about why there may exist a need for another ap-
proach for a shared file system than what is traditionally deployed in an or-
ganisation. We examined existing centralised solutions that, we believe, are
inadequate in terms of ensuring availability when the overall cost of the solu-
tion is kept in mind. We concluded that a peer-to-peer decentralised file system
designed for high availability and fault-tolerance could be a viable alternative.

Chapter 2 presented the design of our system, with three components: the
distributed hash table, file system and the garbage collector. The distributed
hash table uses the XOR metric to replicate blocks among nodes to ensure high
block availability. The file system component organises the blocks of the dis-
tributed hash table into files and directories that user applications can manipu-
late. The garbage collector makes sure that leftover blocks are cleaned up from
time to time.

In Chapter 3 we characterised our design by theoretical analyses, and con-
cluded that:

Availability of blocks Symmetric network splits severely hamper the avail-
ability of large files requested from any node, while asymmetric network
splits mostly affect the nodes in the smallest subnetwork.

File consistency guarantees It is possible to guarantee that retrieved files are
consistent, although it is not possible to guarantee that all nodes will ob-
serve the same version of a file if there are multiple versions.
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Loss of data Data loss is very unlikely with appropriate values of r and Tb.
Decreasing Tb prolongs the time the system is expected to run before data
is lost. Increasing r similarly prolongs the expected time.

Performance characteristics The overhead of writing a file is proportional to
r because the r − 1 replicas are overhead and the other overheads in the
system are relatively inexpensive.

The system is expected to scale better than a centralised file system, be-
cause reading in principle scale up to the sum of the bandwidths of the
links between nodes; writing is degraded by a factor because of the repli-
cation overhead.

Random file access is supported efficiently, but small file changes are ex-
pected to be very inefficient.

Chapter 4 described the implementation of a prototype that consists of the
distributed hash table and the file system. The purpose of the prototype was
to enable us to explore how our system performs in various situations. The
implementation turned out to be quite simple for a distributed file system and
only required 4000 lines of C++ code.

Two types of tests were setup, in Chapter 5, to empirically evaluate the
prototype in a star topology network. The first test examined the robustness
of the use of replication by killing nodes at a large rate, and showed that the
system can largely keep up even under extreme conditions. The second test
examined maximum read and write throughput and showed that the system
scales linearly when reading and slightly sub-linearly when writing; the write
speed was also found to be degraded by a factor as the number of replicas was
varied, as predicted in Chapter 3.

We conclude by following up on the introduction in Chapter 1 with a dis-
cussion of whether the project aims described in Section 1.4 have been fulfilled.

6.2 Fulfillment of the project aims

The project aims can be summarised as to:

• Design a decentralised peer-to-peer file system.

• Implement a working prototype.

• Analyse the design theoretically and in practise through the prototype.

We believe these have been fulfilled overall. The requirements for the design
were:

High availability and fault-tolerance This has been achieved through the use
of replicas that are periodically kept up to date to compensate for crashed
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nodes. The theoretical analysis shows that this technique should be very
efficient under normal conditions. The robustness test shows that the sys-
tem can withstand even worse conditions.

Hence, we conclude that the design makes for a highly available system capable
of tolerating node failures.

Self-organising and dynamic A hash function is used to map hosts and data
into a logical hash space independent of any physical layout, and hosts
may leave (or crash) and join this space as they wish. The procedure for
joining and the periodic updates of replicas and routing tables ensure
that this is taken care of automatically.

Hence, we conclude that the design requires minimal human intervention and
that it is thus self-organising and dynamic.

Reasonable performance The theoretical considerations showed that the over-
head for reading and the periodic updates were minimal under normal
operation. The most serious overhead is for write operations, but it seems
likely that it would be possible to mostly hide this by distributing the
blocks in the background. The use of replication does increase the disk
space usage quite dramatically because each file must be stored r times.
But on the other hand, the design makes it possible to exploit the free
disk space on all nodes

Hence, we conclude that the performance of the design is reasonable, although it
in its current form is unsuited for some purposes due to the write overhead.

Transparency Although transparency is not actually implemented by the pro-
totype as a UNIX mountable device or as a Windows drive service, the in-
terface of the file system makes this achievable without modifying Heurika.
Of course, the performance is vastly different in some situations – for ex-
ample, appending to a log file is an Θ(n2) operation in the number of
lines.

Hence, we conclude that the design is implementable in a way that makes it
transparent for the users, with the exception of some more specialised usage pat-
terns.

Scalability The tests showed that the prototype scales very well with respect
to read and write performance and much better than what a centralised
file system is capable of. Furthermore, the analysis of the overhead for
the periodic replication and routing table updates is small enough to let
the system scale to large amounts of data and large networks.

Hence, we conclude that the design scales well for its intended purpose.

Of course, much is still unknown regarding the behaviour of the system in
different situations. The garbage collector was not implemented and we still
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do not know how it interacts with the rest of the system. Further analyses and
tests would be necessary to fully understand the implications of the design in
a real-world setting.

There is also still plenty of room left for improvements in the design; we
address some of the most obvious issues as suggestions for future work in
Chapter 7.
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Future work

Although the design of Heurika works, as demonstrated by the prototype, it is
far from perfect. This chapter presents current problems with the system and
discusses how they can be solved.

The following problems are investigated:

1. There is no support for access control. Section 7.1 describes the problems
that arise when file permissions are introduced and suggests a solution.

2. It is not possible to lock files to gain exclusive access. Section 7.2 discusses
how Heurika can take advantage of having locks.

3. The topology of the physical network is not taken into account, and local-
ity principles regarding who is using which files are not used to decide
where to save a block. Section 7.3 suggests an approach for using the re-
sponse time to decide which node to request a block from, and Section 7.4
describes how a reasonable locality assumption can be used to achieve
better performance.

4. The overhead for writing is high. One way to reduce it is the observation
that it is a waste of work to replicate a block to r nodes if the blocks are
modified shortly after. Section 7.5 describes such an optimisation.

7.1 File permissions

Ordinary file systems support the notion of file permissions as a means of pro-
tecting access to files. This feature is very important for some applications but
it is non-trivial to implement for a decentralised distributed system. We pro-
ceed with a suggestion for a solution based on the assumption that the other
nodes in the system cannot be trusted.

The file permissions must assure that:
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• Only a closed group of users, the group of readers, are allowed to read a
given file or directory.

• Only a closed group of users, the group of writers, are allowed to write
to a given file or directory.

If the other nodes in the system cannot be trusted, the files must be en-
crypted so that only the group of readers can read the contents. Otherwise,
the nodes that replicate the file would be able to read the parts they are repli-
cating. The simplest solution for encryption is to give each group of readers a
unique secret symmetric key KR which is used to encrypt all files that should
be readable by that group. Then everyone in the group can decrypt the file.

The problem of write protection is more difficult because every node must
be able to verify that a block has not been modified by someone without write
access before accepting the block.

One solution is to give each group of writers a private-public key pair and
add a signature to each block [2]. When the block is written, it is first encrypted
with the secret read key KR. Then a digest of the block is generated and en-
crypted with the private key K−

W for the group. The encrypted digest is attached
to the block and sent to the nodes that are responsible for replicating the block.
The receiving nodes can then decrypt the digest with the public key K+

W and
check that it corresponds to the block contents before accepting to store the
block. The check must also be performed when blocks are republished.

This procedure is shown in Figure 7.1 and 7.2.

Encryption

Dear group,
This file in−
cludes very
secret content
....
....

WB
with K −
Signing

apwmrH&Kka
kdksdksd mdssd
plq25)kd....
.......with KRA

apwmrH&Kka
kdksdksd mdssd
plq25)kd....
.......

....
Signed: skdU83j

Figure 7.1: A block is first encrypted with symmetric encryption to assure that only group
A has read access. Afterwards the encrypted block is signed with asymmetric encryption to
ensure that only group B has write access (group B will usually be a subgroup of group A).

The described solution raises two immediate problems:

• How are the keys managed and accessed? A central key distribution ser-
vice can be deployed [8], but at the risk of becoming a single point of
failure and a bottleneck.
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....

....

+
WB

with K

Read:

Verify:

Decryption
with KRA

Verify signature

secret content

apwmrH&Kka
kdksdksd mdssd
plq25)kd....
.......

....
Signed: skdU83j

apwmrH&Kka
kdksdksd mdssd
plq25)kd....
.......

....
Signed: skdU83j

Dear group,
This file in−
cludes very

Figure 7.2: When a block is to be read, it is first decrypted with the symmetric read key as
shown at the top. As shown below, all nodes that receive a block should verify the signature
using the public write key from the group that has write access to the block. If the signature
is invalid, the block may come from an intruder and should be rejected.

• How does a node find out who has write access to a particular file? Per-
haps the directories in Heurika could be extended to support storing this
information.

Future work is needed to resolve these problems and investigate how the im-
plementation of file permissions affects the robustness and the performance of
the design.

7.2 Locking files

The lack of locks means that nodes that wish to write to a file at same time
cannot prevent each other from overwriting their changes. The situation is not
as bad as for an ordinary file system where the different versions may be in-
terleaved, and due to the way file updating is designed in Heurika, read locks
are superfluous since a file can be read and written concurrently without prob-
lems.

Still, it would be useful if some sort of mutual exclusion for write operations
was supported. Fortunately, the field of distributed mutual exclusion is well-
studied [2], and the task is mostly to pick an algorithm that fits well with the
architecture of our system. Moreover, locks can be used to avoid the problem
that appending to a file is very inefficient.

The use of locks could also be exploited to make the file update algorithm
behave differently in some circumstances. If a process holds a lock on a file,
it is perhaps not necessary to enforce the strict file update algorithm we have
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designed to ensure files are consistent.
Future work is needed to integrate lock support into the design and evalu-

ate the result.

7.3 Exploiting response times for nodes

Whenever a node needs a block, it has r different nodes it could request the
block from. Our prototype simply selects one randomly. This way, the load on
popular blocks is divided evenly between the replicating nodes.

This seems reasonable for small networks where the response time between
each node is more or less the same, but in a more complex network with a
backbone, it is probably a better idea to choose the closest node in terms of
network hops. Unfortunately, on a local area network with switches that do
not touch the IP layer of the packets it is difficult to count the number of hops.

Instead, each node can monitor the response times from other nodes and
choose the node with the lowest response time. This would also help relieve
overloaded nodes.

The question is whether the conditions in the network change too quickly
for the collected response times to be useful. As future work it would be inter-
esting to implement response time monitoring and experiment with its useful-
ness.

7.4 Exploiting data locality principles

The distributed hash table in our system has the property that it distributes
the block evenly among the nodes. This has the advantage of balancing the
load and the data. But it also has the disadvantage of not taking data locality
principles into account.

For example, the users working on nodes in a physical subnetwork are
likely to be placed in the same department and thus need the same data. At
the very least the user on a single node is likely to use the files he has created
himself more than the other files in the shared file system.

Hence, it would make sense to store at least some block replicas in the same
subnetwork. This would make it possible to access the blocks very efficiently
without going through the backbone, and would also help make the most im-
portant files accessible if a network split occurs.

A simple solution is to place one of the replicas on the node that has cre-
ated a given file. The hash key for the creating node could be stored in the file
identifier so that other nodes would know where to look.

Future work is needed to understand what the consequences would be of
such a modification of the design. It is conceivable that the data locality prin-
ciples can be exploited in other ways, too. One obvious idea is to introduce
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caching, although we have not discussed it because it interferes with what the
operating system provides.

7.5 Life time of files

The prototype is designed as a blocking operation so that an application must
wait until all blocks have been sent out in r replicas when a file is being writ-
ten. But the life time of different files vary much and there is evidence that a
considerable proportion of the files live only for a very short time before they
are overwritten again [20].

For a short-lived file it is clearly wasteful to distribute it in r replicas that
immediately become garbage. In other words, files that are going to be stored
for a long period of time needs a stronger life time guarantee than files that are
updated within a short period of time.

Hence, it might be beneficial to introduce the constant rmin and a time in-
terval Tl. When a file is written, a replica of each block is sent to rmin different
nodes with a special flag set. The nodes notice the flag, and after Tl time the
republishing procedure is started and the block will end up being replicated
on r nodes.

As future work, it would be interesting to see what implications this opti-
misation has on the performance.
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Appendix A

Throughput test results
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Figure A.1: Read throughput for r = 1.
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Figure A.2: Read throughput for r = 2.
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Figure A.3: Read throughput for r = 3.
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Figure A.4: Read throughput for r = 4.
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Figure A.5: Read throughput for r = 5.
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Figure A.6: Read throughput for r = 6.
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Figure A.7: Write throughput for r = 1.
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Figure A.8: Write throughput for r = 2.
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Figure A.9: Write throughput for r = 3.
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Figure A.10: Write throughput for r = 4.
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Figure A.11: Write throughput for r = 5.
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Figure A.12: Write throughput for r = 6.
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