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Abstract. In this paper, we represent the task graph scheduling prob-
lem with uniform processors and arbitrary task execution times with
BDDs and devise a breadth-first search and an A∗-based algorithm for
finding optimal schedules. The representation is chosen to minimise the
state BDD sizes, and the transition relations are partitioned to reduce
the computation time and allow optimisations based on analysis of the
task graphs. The empirical results show that guiding the search with
an A∗ approach is difficult in practice, but that the breadth-first search
works very well with graphs with many dependencies.

1 Introduction

The task graph scheduling problem considered in this paper is conceptually sim-
ple: given a directed acyclic graph of dependencies between tasks with arbirary
execution times and an arbitrary number of available homogenous processors,
find a schedule that minimises the total execution time. The problem and vari-
ants of it appear in many practical multiprocessor settings and also in industrial
manufacturing. But since the number of possible schedules in the worst case
grows as the factorial of the number of tasks and finding an optimal one among
them is NP-hard [11], there is no straight-forward way of solving it.

Task graph scheduling has been extensively studied [9], however, and there
are a wide range of approximative algorithms available that find good schedules
within seconds even for problems with 500 tasks.

More recently the engines in verification tools such as SPIN and Uppaal have
been used to solve scheduling problems optimally [1, 13, 14]. This is possible
because task graph scheduling can be reformulated as a state space exploration
problem, and the verification engines are capable of efficient exhaustive searching
in huge state spaces.

An interesting question is that if the adaptation of the scheduling problem
to these verification engines shows some promise, then how far is it possible to
get by instead adapting the engine techniques to fit the scheduling problem. One
widely used technique is reduced ordered binary decision diagrams (BDDs) [3].
BDDs can represent large state sets compactly and have been used succesfully for
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verification of both hardware [4, 5] and software designs. Hence, in this paper we
represent the task graph scheduling problem as a BDD state space exploration
problem and formulate a breadth-first and an A∗ search algorithm for finding
optimal schedules. The BDD representation must be selected with great care to
be tractable in practice. Empirically, the resulting breadth-first search algorithm
is very quick at solving task graphs with many dependencies.

The paper is organised as follows. First we formalise the task graph schedul-
ing problem and briefly describe BDD-based state space exploration. We then
explain the BDD algorithms that have been developed and present the results
and some analysis of applying them on a standard task graph set [10].

2 Task graph scheduling

The task graph scheduling problem consists of a set of tasks G = {t1, t2, . . . , tn}
that are to be scheduled on M uniform processors. Each task ti ∈ G is associ-
ated with an integer execution time T(ti). Furthermore, the tasks are ordered
according to a precedence relation →⊆ G×G where tj → ti if and only if task ti
depends on task tj and cannot start before tj has finished. Let D(ti) denote the
set of immediate dependencies for ti, i.e. D(ti) = {tj |tj → ti}, and let Dc(ti) be
the complete set of dependencies for ti, i.e. Dc(ti) = {tj |∃tl, . . . , tk : tj → tl →
· · · → tk → ti} where k ≥ 0. Note that dependency cycles are not allowed, i.e.
∀ti : ti /∈ Dc(ti).

Hence, the tasks and the precedence relation corresponds to a directed acyclic
graph with G as the set of nodes and → as the set of edges, see Figure 1. Let
a path tl → · · · → tk in the task graph be weighted with the execution time
associated with each node so that the length of the path is

∑k

i=l T(ti). The
critical path CP (ti) to a task ti is the longest path from any task to ti. The
length of the critical path can be found by a simple polynomial time graph
algorithm [6].
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Fig. 1. An example task graph to the left where T(t5) = 3, D(t5) = {3, 4}, Dc(t5) =
{1, 2, 3, 4} and CP(t5) = 3 + 1 + 3 = 7. To the right three feasible schedules for the
task graph with M = 2. The grey slots are free time slots.

An important property of the tasks graphs is the fraction of the number of
complete dependencies in the graph out of the number of possible dependencies.
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We denote this the dependency fraction d. Since the graphs are directed and
acyclic, a fully connected graph will have (|G| − 1) + (|G| − 2) + · · · + 1 =
|G|(|G| − 1)/2 dependencies. Hence

d =

∑

i Dc(ti)

|G|(|G| − 1)/2

A schedule is an assignment of start time s(ti) to each task ti ∈ G. A feasible
schedule is a schedule where at most M tasks run concurrently at any point in
time, i.e. for any set R ⊆ G where |R| > M it holds that

⋂

tj∈R[s(tj); s(tj) +

T(tj)] = ∅, and for each task ti the dependencies tj ∈ D(ti) will have finished
before ti is started, i.e. ∀tj ∈ D(ti) : s(tj)+T(tj) ≤ s(ti). The makespan or length
of a schedule is the time it takes before all tasks have finished, maxi(s(ti)+T(ti)).
An optimal schedule is a feasible schedule with the smallest possible makespan.

Figure 1 shows two optimal schedules together with a non-optimal schedule.
In the non-optimal schedule t3 has to wait an extra time slot for its dependencies
to finish, thereby making the schedule one time step longer.

3 State space exploration with BDDs

A reduced ordered binary decision diagram is a rooted directed acyclic graph
with internal nodes with two out-going edges and two leaf nodes labeled 1 and 0
(true and false) [2, 3, 8]. Each internal node corresponds to a Boolean variable bi

and the two out-going edges, the high branch and the low branch, correspond to
the value of the variable being true or false, respectively. The nodes are arranged
so that a trace of any path from the root of the BDD to a leaf node encounters
variables in the same order.

Furthermore, the BDDs are reduced so that no two nodes correspond to the
same variable and have the same low descendants and high descendants, and no
single node has identical low and high descendant. This means that each BDD
canonically represents a particular Boolean function of m variables, f : B

m → B.
The function value is found by following a path from the root to one of the leaf
nodes, see Figure 2.

A state space exploration problem [8] consist of a state space S, an initial
state sinit ∈ S, a set of goal states Sgoal ⊆ S, and a transition relation T : S × S

where (s, s′) ∈ T if and only if the search is allowed to proceed from the state
s to the next state s′. The set of successor states Sτ+1 to a set of states Sτ is
given by Sτ+1 = {s′|∃s ∈ Sτ : (s, s′) ∈ T}. We denote this image computation
operation by Sτ+1 = IT (Sτ ) and the reverse process, the preimage computation,
by Sτ = I−1

T (Sτ+1).
If a state s is encoded as a bit vector ~s = (b1, b2, . . . , bm), a single BDD can

represent a set of states S ⊆ S as the characteristic function fS : B
m → B of S:

fS(b1, b2, . . . , bm) =

{

1 if (b1, b2, . . . , bm) ∈ S

0 if (b1, b2, . . . , bm) 6∈ S
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Fig. 2. The function f(b1, b2) = b1 ⊕ b2. The solid lines are the high branches, and the
dotted lines are the low branches. The function value is found by tracing a path from
the root to the true or false leaf node as shown for f(0, 1) = 1 to the right.

For example, the set {(1, 0), (0, 1)} can be represented as f(b1, b2) = (b1 ∧ b2) ∨
(b1 ∧ b2) which reduces to f(b1, b2) = b1 ⊕ b2 and is hence represented by the
BDD in Figure 2. With the BDD representation it is easy to find the members
of the set: simply find all paths that lead to the leaf node 1.

The point in using BDDs for representing state sets is that BDDs, in practice,
are very compact. For instance, the peak BDD size of about 30 000 nodes for
one of the test setups of this paper yielded sets with more than 1 000 000 states.

To exploit this efficiency the transition relation must also by represented
by a BDD. This is possible because the relation is also a set with a charac-
teristic function. For example, the transition relation given by the set of pairs
{(〈0, 1〉, 〈1, 1〉); (〈1, 1〉, 〈1, 0〉)} can be described as

T (b1, b2, b
′
1, b

′
2) = (b1 ∧ b2 ∧ b′1 ∧ b′2) ∨ (b1 ∧ b2 ∧ b′1 ∧ b′2)

Note that this T (~s,~s′) is a function of four variables, two variables for the current
state and two primed variables for the next state. In the following we append
functional parantheses when we talking about the BDD representation of a set.

In BDD terms, the image can be computed as an existential quantification
of the variables in ~s over the conjugation of Sτ (~s) with T (~s,~s′) where finally the
resulting variables in ~s′ are renamed (denoted by [~s/~s′]) to the corresponding
values in ~s:

Sτ+1(~s) =
(

∃~s(Sτ (~s) ∧ T (~s,~s′))
)

[~s/~s′]

In implementations a special BDD function is used to compute the conjugation
and existential quantification as one operation. The simplest BDD-based search
algorithms construct an initial state set S1 and a transition relation T , and
iteratively compute the images S2, S3, . . . until a state set Sn with a goal state
is reached.

The preimage is computed as:

Sτ (~s) =
(

∃~s′(Sτ+1(~s
′) ∧ T (~s,~s′))

)

[~s′/~s]
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4 A breadth-first BDD algorithm for scheduling

In order to use BDDs to solve the task graph scheduling problem, it must be
reformulated as a state space exploration problem. We do this by building the
schedules gradually starting from a state where no tasks are started and going
forward one time step at a time assigning task start times, so that in a certain
state some tasks have not started, some are running and some have finished.
For example, the state that corresponds to time step one for the bottom-most
schedule in Figure 1 is the state where t2 and t4 have started and run for one
time step, and the successor state to this is the state where t4 has finished, t2
has run for two time steps and the rest of task have not started yet.

The BDD algorithm described in this section searches these states in a
breadth-first manner using three major phases per iteration. The first phase
generates the states with possible combinations of tasks that can be started, the
second phase run them one step and the last phase stop them if they have fin-
ished. The BDD state representation and the construction of the phases will be
explained in the following. Section 5 describes an A∗ algorithm that reuses the
state representation and transition relations but searches in a different manner.

4.1 State representation

We represent the states by associating with each task two Boolean variables,
tstarted,i and tfinished ,i, and an integer counter tclock,i. When tstarted,i is true,
task ti is running and tclock,i keeps track of its execution time until the task
has finished and tfinished ,i is set to true. Additionally an integer counter mfree is
used to keep track of the number of free processors. The counters are encoded
in binary with a number of Boolean variables.

Instead of this representation it would be possible to use only a clock counter
for each task by encoding the initial state of a task as a special clock value. But
with our representation it is possible to omit constraints on the clock variables
of a task when it is not running, and at most M tasks will be running at the
same time in each state. In practice, avoiding constraining the clock variables
gave a significant reduction of the sizes of the state set BDDs. Furthermore, the
transition relations are simpler when it is only necessary to check one variable
to discover whether a task is started or has finished instead of all the clock
variables.

The ordering of the variables is shown in Figure 3 for the graph in Figure 1.
Placing the mfree variables first was empirically found to give better performance
than placing them last, which we believe is caused by the fact that most of
our transition relations depends on the value of mfree and hence can skip the
irrelevant parts of the state set BDDs quickly if the mfree variables are first. The
tasks are placed in a topologically sorted order so that all dependencies of a task
are placed before that task. The primed next state variables are placed directly
after their current state counterparts, e.g. tstarted,i < t′started,i < tfinished ,i <
t′finished ,i. Dynamic variable ordering [4] where the ordering of the BDD variables
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are changed during execution was tried, but only consumed extra computation
time without decreasing the state set BDD sizes.

mfree tcl.,2 tcl.,5tcl.,4tcl.,1

tst.,1 tfi.,1 tst.,2 tfi.,2 tst.,3 tfi.,3 tst.,4 tfi.,4 tst.,5 tfi.,5

tcl.,3

Fig. 3. Variables for the processors free counter are placed first, followed by the state
and clock variables for each task.

Another way of representing the states is to have explicit processors, each
with a counter, and instead of a clock on each task have an identifier for which
processor it is running on. With only a few processors it is likely to use fewer
state variables in total. But the transition relations must then be much more
complex since they need to match tasks with processors; this makes the image
computations much slower.

Even worse, with explicit processors there is the problem that two equivalent
states, e.g. task 1 started on the first processor vs. task 1 started on the second,
are differently represented which contributes greatly to the state explosion. Our
implicit processor representation completely avoids this.

For testing for equality between binary counters and integers we will in the
following use a shorthand such as tclock,i = 0 for the requirement that the clock
for task ti is zero instead of the complete Boolean expression

∧

1≤k≤K

tclockk,i, K = dlog2(T(ti) + 1)e

where K is the number of bits needed to represent the clock counter.
Having defined the states and some notation the initial state of the algorithm

is simply

~sinit = (mfree = M) ∧
∧

i

tstart,i ∧ tfinished ,i

where M processors are free and all tasks are not started and not finished. Note
that we do not constrain the clock variables. For the graph in Figure 1 the initial
state is:

~sinit = mfree
1
∧ mfree

2
∧ tstarted,1 ∧ tfinished ,1 ∧ tstarted,2 ∧ tfinished ,2 ∧ · · ·

The goal states are those states where all tasks have finished, i.e. Sgoal =
∧

i tfinished ,i.

4.2 Start transition relation

The first phase in each iteration is the image computations of a series of transition
relations Tbi

(~s,~s′) to generate the states with all possible combinations of tasks
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started, i.e. the state where no tasks are attempted started and the states where
task one is started if possible, where task two is started if possible, where task
one and two are started if possible, etc.

The reason we are using a number of transition relations for this purpose
instead of a single large one is that it is more flexible and makes it possible
to avoid a large number of constraints for keeping variables unchanged. Since
a large relation would be a disjunction of the individual Tbi

(~s,~s′), the splitted
relation is what is referred to as a disjunctive partioning [5].

Each Tbi
(~s,~s′) allows a transition that sets tstarted,i to true and decrements

the number of free processors if task ti has not been started yet, there is a free
processor and the immediate dependencies of task ti have finished:

Tbi
(~s,~s′) = (mfree 6= 0) ∧ tstarted,i ∧

∧

d∈D(ti)

tfinished ,d

∧ t′started ,i ∧ t′finished ,i ∧ (t′clock,i = 0) ∧ (m′
free = mfree − 1)

As an example, the transition relation for task 3 in the graph in Figure 1 is:

Tb3(~s,~s
′) = (mfree

1
∨ mfree

2
) ∧ tstarted,3 ∧ tfinished ,1 ∧ tfinished ,2

∧ t′started,3 ∧ t′finished ,3 ∧ t′clock,1 ∧ m′
free = mfree − 1)

We avoid constraints for keeping the variables for the other tasks unchanged by
letting the image computation quantify and rename only the variables that can
change from the current state to the next state in the above expression. This
implies that the BDD nodes for current state variables for the other tasks are not
affected and hence stay the same. The omitted constraints reduce the transition
relations and thereby the computation time greatly.

The relations Tbi
(~s,~s′) can be used to compute all the possible combinations

of started tasks with a fixed point algorithm that at each iteration starts either
of the tasks or none. But in practice a more efficient way of generating the
combinations is the recurrence:

Si+1 = ITbi
(Si) ∪ Si , 1 ≤ i ≤ |G|

At the first step of the recurrence the current state set consists of the original
state set and the states where task 1 is allowed to start. At the second step
the current state set consists of the original state set, the states where task 1 is
allowed to start, where task 2 may start and where both task 1 and 2 may start.
And so forth.

4.3 Run transition relation

The next phase in each iteration ensures for each task that either the task has
not started, it has finished or the clock of the task is incremented by one:

Tr(~s,~s
′) =

∧

i

tstarted,i ∨ tfinished ,i ∨ t′clock,i = tclock,i + 1
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Again, the image computation only quantifies and renames variables that are
supposed to change, here the clock variables, so that we avoid having to set all
other variables equal to their successor. For the graph in Figure 1 the transition
relation will be:

Tr(~s,~s
′) = tstarted,1 ∨ tfinished ,1 ∨ t′clock,i = tclock,i + 1 · · ·

4.4 End transition relation

The last phase in each iteration ensures that all tasks that have run their entire
time are marked as finished. This is done by computing the image where the
first task is stopped if possible, then computing the image where the second
task is stopped if possible, etc. The relation for task ti is a disjunction of the
two possibilities that either the task is not running and the state should remain
unchanged, or the task is running, in which case it has finished if the clock of
the task is T(ti) or else remain unchanged:

Tei
(~s,~s′) =

(

(tstarted,i ∨ tfinished ,i)

∧ t′started,i ↔ tstarted ,i ∧ t′finished ,i ↔ tfinished ,i ∧ m′
free = mfree

)

∨
(

tstarted,i ∧ tfinished ,i

∧ (tclock,i = T(ti) ∧ t′started,i ∧ t′finished ,i ∧ m′
free = mfree + 1

∨ tclock,i 6= T(ti) ∧ t′started,i ∧ t′finished ,i ∧ t′clock,i = tclock,i

∧ m′
free = mfree)

)

The image computation then only quantifies and renames all the variables of
task ti and mfree . Note that there are no requirements for the clock variables if
task ti has not started or has finished.

4.5 Bounding the possible task running times

Because of the dependencies in the task graphs, most tasks cannot start until
after a certain point in time, the earliest possible start time E(ti). Furthermore
most tasks must have started before a certain other point in time, the latest
possible start time L(ti), in order to yield an optimal schedule.

A task ti cannot possibly start before its complete set of dependencies Dc(ti)
have run so E(ti) is the length of an optimal schedule for the subgraph with the
tasks in Dc(ti). This is of course the very problem we are trying to solve, but we
can obtain a safe estimate quickly by observing that the start time is bounded
from below by the length of the critical path to the task and also by the sum of
the execution times of the tasks in Dc(ti) divided by the number of processors:

E(ti) ≥ max(CP(ti), d
∑

d∈Dc(ti)

T(td)/Me)

For the example in Figure 1, CP(t3) = 3 and
∑

d∈Dc(t3)(2 + 3)/2 = 3 which

gives E(t3) = 3.
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Now consider a task ti and the subgraph G with ti and all the tasks that
depend on ti (i.e. {tj |ti ∈ Dc(tj)}). Task ti must have started and run to com-
pletion some time before the schedule is complete – else the other tasks in G
would not have time to run. More precisely, ti must have finished in time for the
longest path from ti to some leaf node in G to execute. Hence, L(ti) is the length
of the critical path in G subtracted from the length O of an optimal schedule,
L(ti) = O − CP(G). For the example in Figure 1, Gt3 = {t4, t5}, CP(Gt3) = 3,
O = 3 + 1 + 3 = 7 resulting in L(t3) = 6 − 3 = 3.

O is of course not known, but an overestimate can be computed with a fast
heuristic algorithm that generates good schedules. One such simple algorithm
is a slight modification of this breadth-first search algorithm that at each step
only picks the schedules that starts the most tasks.

At each step in the algorithm, the bounds E(ti) and L(ti) can be used to
avoid computing images over transition relations that cannot possibly start or
end a task at that step – in practice, this was found to save at least 50–60% of
the start and end image computations. Furthermore, L(ti) can be used to prune
the state sets from states where a task that would certainly have been completed
in an optimal schedule is not finished yet – refer to Section 4.6 for details. This
was also found to speed up the algorithm (by more than 10%).

A further possible optimisation is to keep track of already reached states and
prune the current state set from these at each iteration. This will reduce the
number of states, but empirically it turns out that the BDDs for the state sets
actually end up larger so that the algorithm becomes slower (about twice the
running time). An explanation for this could be that the extra states can make
variables in some paths irrelevant which makes it possible to reduce the BDDs
more.

4.6 The complete algorithm

The complete algorithm appears in Listing 1.1. Line 3–5 put the current state
set through the start transition relations of the tasks that are able to start at
this point, line 6 advances the clocks one step with the run transition relation
and line 7–9 finishes tasks with the end transition relations of those tasks that
can possibly finish. Line 10–11 cuts of states with unfinished tasks that certainly
would have had finished in an optimal schedule.

When the algorithm terminates, the length of an optimal schedule is simply
the number of iterations in the loop. To actually obtain an optimal schedule
the algorithm must be modified to save the current state S at each iteration.
Denote these by S1, . . . , Sn and let for the sake of the explanation T denote
a combined abstract transition relation that encompasses both the start, run
and end transition relations. Then a sequence of states s1, . . . , sn leading to an
optimal schedule, i.e. s1 = sinit , sn ∈ Sgoal and (sτ , sτ+1) ∈ T for 1 ≤ τ < n,
can be obtained by setting sn to a solution in Sn and picking sn−1, sn−2, . . . , s1

with the recurrence sτ ∈ I−1
T (sτ+1) ∩ Sτ . With the states s1, . . . , sn, a schedule

can be constructed by examining the states in turn to discover when each task
is started (by conjugation with the constraint tstarted ,i).
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1 S = {sinit}
2 τ = 0
3 while (S ∩ Sgoal) = ∅
4 for each task ti

5 if E(ti) ≤ τ ≤ L(ti)
6 S = ITbi

(S) ∪ S

7 S = ITr (S)
8 for each task ti

9 if E(ti) + T(ti) ≤ τ ≤ L(ti) + T(ti)
10 S = ITei

(S)

11 if = L(ti) + T(ti)
12 S = S ∩ tfinished,i

13 τ = τ + 1

Listing 1.1. The breadth-first based algorithm; S is the current state set.

5 A guided BDD algorithm

Instead of searching exhaustively for an optimal schedule in a breadth-first man-
ner, it is possible to guide the search with an adaptation of A∗ for BDDs [7, 8].
The cost of reaching each set of states is maintained and combined with an un-
derestimate of the remaining cost to reach a goal state. This gives a lower bound
on the total cost of a set of states, which means that promising states with a
lower cost can be examined first.

When applying the A∗ algorithm to a problem, a measure of cost and a
heuristic to estimate the remaining cost must be established. An intuitive ap-
proach for the task graph scheduling problem is to use the length of the schedule
as the cost measure, but unfortunately it is very difficult to compute a useful
underestimate of the remaining schedule length.

Instead we let the cost be the number of free time slots in the schedule and
use the number of free slots at the next step of the schedule as an estimate
of the remaining free slots. These choices will give optimal schedules since the
number of free slots at the next step is a lower bound on the total remaining
free slots, and a schedule with the fewest possible free time slots must be an
optimal schedule. To see this, consider the schedules in Figure 1 where the two
optimal schedules both have three free time slots, whereas the schedule with five
free slots is one step longer – more free time slots necessarily means a longer
schedule.

The algorithm, given in Listings 1.2, works by maintaining a priority queue
of visited states and their costs. When a state set has been through the start
transition (line 7-8), it is (on line 9-15) split according to how many free slots
the transition creates, and the new state sets are then enqueued with their new
cost. States with equal cost are merged.

When the algorithm has finished, the length of an optimal schedule is the
sum of the execution times for all tasks and the number of free slots, divided by
the number of processors.
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1 Q.insert(sinit)
2 while (Q.top() ∩ Sgoal) = ∅
3 (h, S) = Q.pop()
4 S = ITr (S)
5 for each transition Tei

6 S = ITei
(S)

7 for each transition Tbi

8 S = ITbi
(S) ∪ S

9 for i = 0 to M

10 Zi = (S ∩ mfree = i)
11 h′ = h + i

12 if Q contains a state p with h′ free slots
13 p = p ∪ Zi

14 else

15 Q.insert(h′, Zi)

Listing 1.2. The A∗ algorithm; h is the number of free slots associated with a
state set in Q.

Unfortunately, the algorithm can only compute the length of an optimal
schedule and is not capable of actually finding one since it does not keep track
of the time for each state. It is possible to split the state sets in the queue even
further so that states with different times are separated; this also has the benefit
of making it possible to search the most complete schedules first. Unfortunately,
the performance turns out to be abysmal in practice because the queue is splitted
into so many states that the benefit of using BDDs vanishes.

6 Experimental evaluation

The breadth-first search and A∗ algorithms have been implemented in C++
with the BDD package BuDDy [12]. Artificially generated task graphs from the
Standard Task Graph Set [10] were used to check the algorithms and evaluate
their performance.

The experiments were carried out on a SUN Solaris 9 machine with eight 900
MHz UltraSPARC III CPUs (the implementation was, however, single-threaded)
and 32 GB RAM.

6.1 Results for graphs with 50 tasks

The breadth-first algorithm and the A∗ algorithm were run on the first 120 of
the graphs with 50 tasks from the Standard Task Graph Set, with 2, 4 and 8
processors. Each process was allowed to run for at most one hour and was given
about 2 GB RAM. The results appear in Figure 4 and 5.

Overall, the results show that the breadth-first algorithm can solve many
of the problems optimally within one hour. But there are large differences in
how much time it takes to solve the different task graphs. Also, some graphs
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Fig. 4. Breadth-first search results with 2, 4 and 8 processors for the 120 first graphs
with 50 tasks. 52.5% were solved with two processors, 48.3% with four and 66.7% with
eight.
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are solved fastest with two processors and some with four, although clearly the
algorithm is best with eight processors. The differences seem to have to do with
the number of states in the state sets. More processors result in more states
since there are more possible schedules. The reason that eight processors then
was faster seems to be that the state set BDDs exhibited more sharing. Also
the E and L estimates are more accurate with eight processors, which allows
the algorithm to cut off a lot of states. And finally the algorithm runs for fewer
iterations since the length of the schedule is shorter.

In comparison, the A∗ algorithm performed worse on almost all instances.
There are two explanations for this. First, the A∗ algorithm will search all sched-
ules with no free slots first, then those with one free slot, etc. If there are no
free slots in the optimal schedules this reduces the number of states to search,
but if the optimal schedules contain x free slots then the search has to fully
explore x non-optimal branches, whereas the breadth-first algorithm examines
all of these at the same time. Second, since the A∗ algorithm does not keep track
of the elapsed time it is not possible to use the E and L optimisations. Indeed,
experiments with earlier versions of the breadth-first algorithm without the E

and L optimisations showed that the A∗ algorithm then was faster on graphs
where the optimal schedules did not have any free slots.

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

ct
io

n 
so

lu
bl

e 
w

ith
in

 6
0 

m
in

ut
es

Dependency fraction

2 proc. 4 proc. 8 proc.

 0

 20

 40

 60

 80

 100

 120

2822211815118421

R
un

ni
ng

 ti
m

e 
(m

in
ut

es
)

Task graph no.

0% edges removed 25% edges removed 50% edges removed>

Fig. 7. To the left, the fraction of task graphs that were soluble with the breadth-
first algorithm within 60 minutes in intervals of dependency fractions. To the right,
the breadth-first algorithm run on selected task graphs with 0%, 25% and 50% edges
removed at random.

An interesting question is what characterises the task graphs that the al-
gorithms have trouble solving. The dependencies in the graphs are generated
with four different algorithms. The graphs 0–29 and 60–89 are generated with
random dependencies, while 30–59 and 90–119 are generated by placing tasks
in layers without internal dependencies. Moreover 0–59 use fixed probabilities
whereas 60–119 use a fixed number of predecessors which results in relatively
fewer dependencies on larger graphs; Figure 6 shows the dependency fraction for
the first 120 graphs.

Consider the plot to the left in Figure 7 with the fraction of soluble graphs
in the dependency fraction intervals 0–20%, 20–40%, 40–60%, 60–80% and 80–
100%. Clearly, the number of dependencies are crucial for the solubility; in the
interval 80–100, all graphs were soluble. This is confirmed by the plot to the right
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in Figure 7 where the breadth-first algorithm experiment has been repeated on
eight quickly solved graphs with 25% and 50% of the edges removed at ran-
dom. The reason that more dependencies yield better performance is that the
dependencies constrain the problem and thus in general lead to fewer feasible
schedules to examine.

6.2 Results for graphs with more than 50 tasks

The results of running the breadth-first search algorithm on the first ten 100, 300
and 500 task graphs appear in Table 1. Since the breadth-first search algorithm
was faster than the A∗ algorithm, we did not try the latter on the large graphs.

0 1 2 3 4 5 6 7 8 9

100 10h25m – 6m 38m – 7m3s 55m – – 1h21m
d (%) 58.2 41.8 80.0 72.2 54.0 83.6 75.3 58.1 34.6 76.4

300 4h8m – – 52m 23h7m – 59m 24h46m – –
d (%) 91.8 85.8 77.8 93.6 89.6 81.5 94.8 90.3 85.9 72.0

500 – 18h10m – – 11h24m 139h16m – – 46h54m –
d (%) 79.3 94.9 92.5 84.8 95.5 93.6 88.9 78.0 95.1 91.2

Table 1. The breadth-first search algorithm on the first ten graphs with 100, 300 and
500 tasks. For the graphs without a result the state set BDDs grew so large that the
algorithm would not have finished in reasonable time.

Unfortunately, the algorithm does not seem to scale well. With twice as
many task, it is an order of magnitude slower. The extra tasks enlarge the state
representation and increases the number of transition relations. As expected the
performance is also correlated with the dependency fraction for the large graphs.

7 Conclusions and future work

We have represented the task graph scheduling problem as a BDD state space
search problem and explored a number of design alternatives. The state repre-
sentation was chosen so that any temporarily unused BDD variables could be
ignored, and the transition relation was split into three semantic phases of which
the first and last phase were further partitioned into a relation per task. These
two ideas made the algorithms tractable in practice. Furthermore, the bounds
for the time frame in which a given task could run were estimated and used
to save more than half of the image computations, and also allowed pruning of
some non-optimal schedules.

Some other techniques from the literature [4] turned out to have a negative
impact on the performance. Dynamic variable ordering was tried but did not
reduce the state set BDDs, and pruning of already visited states enlarged the
state set BDDs instead of reducing their size.
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But overall, a breadth-first search algorithm was found to be able to solve 50%
of the task graphs with 50 tasks and at least 40% of the possible dependencies
within 60 minutes. Larger task graphs with many dependencies could also be
solved, although it then takes more than ten hours to find an optimal schedule.
A guided search strategy with a BDD adaptation of the A∗ algorithm was also
tried, but was found to be inefficient. We attribute this to the fundamental
problem of finding a heuristic for the scheduling problem that is able to compete
with the brute-force breadth-first search.

Future work could be to extend the BDD representation to model more
complex scheduling problems, such as scheduling with communication costs or
job-shop problems.
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